Development of Novel System and Component Architectures for Future Innovative 100 GBit/s Communication Systems

Christian Carlowitz

Friedrich-Alexander Universität Erlangen-Nürnberg

christian.carlowitz@fau.de

research supported by German Research Foundation (DFG), SPP 1655
Project Partners

- **Prof. Dr.-Ing. Martin Vossiek**
 Institute of Microwaves and Photonics (LHFT)
 Friedrich-Alexander Universität Erlangen-Nürnberg

- **Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel**
 Institute of Electronics Engineering (LTE)
 Friedrich-Alexander Universität Erlangen-Nürnberg

- **Prof. Dr. sc. techn. habil. Frank Ellinger**
 Chair of Circuit Design and Network Theory (CCN)
 Technische Universität Dresden

- **Prof. Dr.-Ing. Manfred Berroth**
 Institute of Electrical and Optical Communications Engineering (INT)
 Universität Stuttgart
Outline

1. Introduction
 - Motivation
 - SPARS Concept
 - Transceiver Architecture

2. Project Topics
 - LHFT: System Concept Investigation and Experimental Verification
 - CCN: 180 GHz SPARS Receiver Frontend Design
 - LTE: 180 GHz QAM Modulator and High Speed DAC Design
 - INT: High Speed Receiver Analog Baseband Architectures and Design

3. Conclusion
Motivation

- High speed communication systems:
 - Symbol rate up to 20% of carrier
 - e.g. 2x18 GBaud at 180 GHz → > 100 GBit/s wireless

- Technological limitations:
 - Operation close to process transit frequency
 → Low single-stage amplifier gain
 - Scaling issues: Long amplifier chains, high area cost, high power dissipation

- Goal: Scalable, efficient and broadband quadrature transceivers beyond homodyne architectures
SPARS - “Simultaneous Phase and Amplitude Regenerative Sampling“ - A disruptive technology

The ordinary approach

\[s(t) \xrightarrow{g} g \xrightarrow{g} g \xrightarrow{g} g \xrightarrow{g} g_t \cdot s(t) \]

Gain: \(g_t = g^N \)

Example (with \(N=5; \ g = 2 \)): \(\Rightarrow g_t = 32 \)

Power dissipation:

\[P_{d_{total}} = 5 \cdot P_d \]

SPARS / SRO approach

\[s(t) \xrightarrow{g} g \xrightarrow{g} g_t \cdot \text{III}_{T_{sw}}(t) \cdot s(t) \]

Gain (pos. feedback):

\[g_t = \sum_{l=1}^{L} g^l \]

Example: (with \(L=4; \ g = 2 \)): \(\Rightarrow g_t = 30 \)

Power dissipation:

\[P_{d_{total}} = P_d \]

Power consumption and complexity dramatically reduced, especially useful when working close to transit frequency
System Concept

- **Novel Transceiver Architecture: “SPARS”, Simultaneous Phase and Amplitude Regenerative Sampling**

- **Major Benefits**: Overcome scaling and power dissipation issues by:
 - High gain boost with single stage amplifier \((6 \text{ dB} \rightarrow 30 \text{ dB})\)
 - No PLL, no stabilized LO, no LNA or PA chains
 - Employing self-mixing receiver approach
 - Relaxing modulator power level requirements
System Concept Investigation and Experimental Verification
Noise Figure, SNR/Sensitivity

- Super-regenerative oscillator vs. amplifier chain
 - Difference:
 - amplifier chain adds noise after each stage:
 - SRO adds signal and noise at each oscillation cycle:
 - Noise bandwidth?
 - homodyne receiver: symbol rate is lower bound (with sinc-shaped pulses, rect. filter)
 - super-regenerative theory:
 → similar performance achievable
 - at technological boundaries: 2-4 dB excess
- overall: SRO and amplifier chain comparable / slight SRO advantage

\[F_{ac} = F + \sum_{k=1}^{n-1} \frac{F - 1}{G^k} \]
\[F_{sro} = F \]
Pulse Recovery

- SRO samples *average* input power during sensitivity phase
- countermeasures (if peak power limited):
 - gain tuning → faster rise, shorter sampling period
 - slight compression → widens peak maximum
 - quench signal shaping → hold unity gain on decay

![Graphs showing SNR degradation and time-domain signal](image)
Achievable Data Rate

- Minimum period: Oscillation rise and decay + SNR margin
- Dependencies:
 - oscillator tank quality factor Q_0
 - active element gain M
- Typically low open loop gain (e.g. < 3 dB)
- Rise time limitation ($\tau = \frac{2}{f_0} \ldots \frac{4}{f_0}$) included in simulation
- Results:
 - 10x gain with 8-10% relative symbol rate could be achieved
 - Preliminary experimental result with scaled demonstrator
 - 270 MBaud measured @ 5.8 GHz
 - 293 MBaud theoretical expectation

Achievable Data Rate target preliminary experimental results (scaled demonstrator)

Achievable Data Rate

Minimum period: Oscillation rise and decay + SNR margin

Dependencies:
- oscillator tank quality factor Q_0
- active element gain M

Typically low open loop gain (e.g. < 3 dB)

Rise time limitation ($\tau = \frac{2}{f_0} \ldots \frac{4}{f_0}$) included in simulation

Results:
- 10x gain with 8-10% relative symbol rate could be achieved
- Preliminary experimental result with scaled demonstrator
 - 270 MBaud measured @ 5.8 GHz
 - 293 MBaud theoretical expectation

Achievable Data Rate target preliminary experimental results (scaled demonstrator)
Demonstrator Implementation

- Complete transmitter and receiver at 5.8 GHz, 150 MBaud (450 MBit/s)
 - passive 8-PSK modulator (diode switched transmission lines, 11 dB loss)
 - discrete SRO (electrically small, single port)
 - filter/antenna from COTS components (~10 dB loss)
 - Receiver: Isolator at input, self-mixing with cable delay line
Demonstrator Measurement Results

- Complete Transmitter & Receiver:
 - Modulation: 8-DPSK
 - EVM < -18 dB (BER < 10^{-3})
 - diff.: EVM < -21 dB
 - Measured Deviations:
 - TX EVM -30 dB (systematic)
 - RX EVM -24 dB (stochastic)
 - Sensitivity CW: -77 dBm, pulsed: -75 dBm → close to theoretical SNR=P_s/(k*T*B*F)

- 24 GHz 16-QAM Demonstrator (SRO only):
 - 343 MBaud (1.37 GBit/s)
 - 5 dB single stage gain → 25 dB
 - linear recovery of amplitude and phase
180 GHz SPARS Receiver Frontend Design
Integrated mm-Wave Super-Regenerative Oscillators (mmW SROs)

- Most amplification is done in SRO component
- Many design compromises possible e.g. gain, symbol rate, dynamic range, etc.
- Proper modelling of SRO circuit provides guidelines for performance optimization
- Large-signal behavior is of highest importance
- Study relation between V_{out} and V_{in} in phase and amplitude
- Model implemented electrically using CAD tools
- Cross-coupled topology chosen for monolithic integratability
Modeling of integrated mmW SROs

- Ideal nonlinear model; no base currents, numerical simulations
- Amplitude and phase sampling
- Influence of design variables on performance can be studied (e.g. loop gain, RC time constant, etc.)

Amplitude Modulation

\[
\text{Vout (V)} = \begin{cases}
0 & \text{Vsw} = 0 \\
\frac{V_{in}}{2} & \text{Vsw} > 0 \\
-\frac{V_{in}}{2} & \text{Vsw} < 0
\end{cases}
\]

Phase Modulation

\[
\text{Vout (V)} = V_{in} \sin(\phi)
\]

Where:
- \(V_{in} \) is the input voltage
- \(\phi \) is the phase shift

Equation for differential current:

\[
I_{\text{diff}} = I_0 \tanh\left(\frac{\kappa V_{\text{out}}}{2V_T}\right)
\]
Cross-Coupled mmW SRO in IHP 0.13-µm SiGe BiCMOS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{osc} (GHz)</td>
<td>148</td>
</tr>
<tr>
<td>P_{DC} (mW)</td>
<td>48</td>
</tr>
<tr>
<td>f_{sw} (GHz)</td>
<td>1</td>
</tr>
<tr>
<td>P_{out} (dBm)</td>
<td>-6</td>
</tr>
<tr>
<td>Area (mm2)</td>
<td>0.66</td>
</tr>
<tr>
<td>Gain (dB)</td>
<td>36</td>
</tr>
</tbody>
</table>
Single-Ended Colpitts mmW SRO in IHP 0.13-μm SiGe BiCMOS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{osc} (GHz)</td>
<td>160</td>
</tr>
<tr>
<td>P_{DC} (mW)</td>
<td>6.6</td>
</tr>
<tr>
<td>f_{sw} (GHz)</td>
<td>5</td>
</tr>
<tr>
<td>P_{out} (dBm)</td>
<td>-8.4</td>
</tr>
<tr>
<td>Area (mm2)</td>
<td>0.64</td>
</tr>
<tr>
<td>Gain (dB)</td>
<td>18.4</td>
</tr>
</tbody>
</table>
180 GHz QAM Modulator and High Speed DAC Design
SPARS based frontend

Functionality
- Generates 180 GHz carrier frequency with a times ten frequency multiplier
- 16 QAM modulation achieved via two radio-frequency Digital-to-Analog Converters of 2 bit each with a modulation rate of up to 18 GS/s
Radio-Frequency Digital-to-Analog Converter

- RFDAC combines D/A conversion and upsampling
- Reduced components compared to e.g. homodyne architecture
Radio-Frequency Digital-to-Analog Converter

- Current steering principle
 - Better spectral purity and wider bandwidth

- Upsides
 - Rejection of all outputs at DC and even harmonics of f_{LO}
 - All transistors act as switches, hence no linearity constraints

- Linearity of output signal defined by:
 - Resolution of converter
 - Output impedance modulation
 - Mismatch in timing
Design of a 2 bit 180 GHz RF-DAC for SPARS

- Each RF-DAC consists of three identical RF-DAC cells
 - Current summation at the output via broadband transmission lines
 - Buffers for signal boosting and for blocking of clock feed through
 - Flip-Flops for retiming purposes

- Output stage of each RF-DAC cell features two parallel connected Gilbert cells working as BPSK modulators
 - Ratio between the transistors and currents of the two Gilbert cells to be 3:1
 - Transformer increases linearity and SNR
High Speed Receiver Analog Baseband Architectures and Design
SPARS baseband receiver

Functionality

- Digitization of wideband inphase (I) and quadrature (Q) receive signals (> 9 GHz) by PGA+ADC solution
- **External data storage on FPGA** to ensure a sufficient number of receive samples for
 - system demonstration experiments and
 - evaluation of link synchronization parameters (e.g., I/Q gain and phase mismatches, etc.)
SPARS PGA

PGA architecture

Die photograph
implemented in 0.13 μm SiGe BiCMOS from IHP

Specifications
Gain range: 31 dB in 1 dB steps
Gain accuracy: -0.19/0.46 dB @ 1 GHz
Bandwidth: >10.1 GHz
Measurement Results

Achievements

- Low-complexity PGA architecture
- 31 dB gain range programmable in 1 dB steps
- Gain accuracy smaller than 0.46 dB
- >10.1 GHz 3-dB bandwidth
SPARS ADC

ADC architecture

- ADC ... Analog-to-Digital Converter
- PRBS ... Pseudo Random Bit Sequence
- FD ... Frequency Divider

RF PCB (left) and die photograph (right)

implemented in 0.13 µm SiGe BiCMOS from IHP
Measurement Results

![Graph showing ENOB and SFDR vs Frequency for different sampling rates.]

Achievements

- Enables sampling rates from DC to 42 GS/s => more than 60% speed **improvement** to current state-of-the-art single-core ADCs with digital encoder (25 GS/s)

- **ENOB > 3 bits** and **SFDR >24.8 dBC** within **DC-20 GHz frequency band** up to 39 GS/s

- **FOM = 8.3 pJ/conv.**

Real-time measurement with 70 GHz sub-sampling scope
Conclusion

- Novel transceiver architecture concept based on „Simultaneous Phase and Amplitude Regenerative Sampling“
 - significantly reduced system size and power consumption
 (single-stage instead of multi-stage amplifiers, no receiver synthesizer, …)
 - verified to be competitive to homodyne system in terms of noise and data rate with scaled demonstrator
- mmW Super-Regenerative Oscillator for 180 GHz target frequency implemented and successfully verified
- Transmitter RFDAC concept investigated and implemented to exploit relaxed power level requirements from high SRO gain
- 4 bit ADC with up to 42 GS/s and outstanding performance as well as wideband baseband PGA demonstrated experimentally
- Next steps: Component integration to demonstrate mmW self-mixing receiver
References (I)

- C. Carlowitz and M. Vossiek, “PSK Modulator for Regenerative Sampling Gigabit UWB Communication,” in Proceedings of the 8th German Microwave Conference (GeMiC2014), Aachen, Germany, Mar. 2014.
References (II)

- X.-Q. Du, M. Grözing, M. Buck and M. Berroth, "A 40 GS/s 4 bit SiGe BiCMOS Flash ADC," IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), to be published.