Mixed-Mode Baseband for 100 Gbit/s Wireless Communication

J. Christoph Scheytt¹, Rolf Kraemer², Ingmar Kallfass³

¹Heinz Nixdorf Institute, University of Paderborn, ²BTU Cottbus-Senftenberg, ³University of Stuttgart

christoph.scheytt@hni.upb.de

Real100G.com

Routes to 100 Gbps Wireless

- Very high spectral efficiency with moderate bandwidth
 - 10 bit/sHz with 10 GHz BW
 - RF band e.g. V-band (60 GHz) or E-band (97-95 GHz)
- Moderate spectral efficiency with very large bandwidth
 - -2-4 bit/sHz with 25 -50 GHz BW
 - RF mm-bands at 200 GHz or more
- Free space optics
 - e.g. 40 Gbaud with 8 PAM
 - 193 THz (λ =1550nm, infrared)
 - Potential for Tbit/s, using WDM

Wireless 100 Gb/s at $f_c > 200 \text{ GHz}$

- Our approach to 100 Gb/s Wireless focused on:
 - $f_{c} > 200 \text{ GHz}$
 - Moderate spectral efficiency: 2 4 bit/sHz
- \rightarrow High RF bandwidth (up to 50 GHz)
- \rightarrow High baseband bandwidth (up to 25 GHz)

Wireless 100 Gb/s at $f_c > 200$ GHz

data rate in Gbit/s	100	100	100	100	100
center frequency in GHz	61,5	275	275	275	275
modulation	2^20 QAM	4 PSK	4 PSK	4 PSK	4 PSK
number of channels	1	1	1	1	4
bandwidth per channel in GHz	5	50	50	50	12,5
SNR required for BER<10^-3 in dB	53,26	7,33	7,33	7,33	7,33
output power per channel in dBm	16	6	6	6	6
noise figure in dB	6	12	12	12	12
minimum required receive power in dBm	-17,58	-47,51	-47,51	-47,51	-53,53
Tx antenna gain in dBi	10	0	10	25	25
Rx antenna gain in dBi	10	0	10	25	5
margin / implementation loss in dB	10	10	10	10	10
maximum path loss in dB	43,58	43,51	63,51	93,51	79,53
achievable range in m	0,058598	0,012999	0,129994	4,110759	0,822152

 → Making assumptions on realistic BW, TX Power, RX NF etc. we will need highly directional antennas for range > 1m.

Challenges in 100 Gb/s Digital BB Approach

Ultra-fast DACs/ADCs

- → power hungry, challenging design
- Many TFLOPs for signal processing → power hungry, complex hardware

100 Gb/s Mixed-Signal BB Approach

- Analog processing is inherently power and hardware-efficient, especially for broadband circuits.
- Shift analog/digital boundary
 → mixed-signal BB with significant analog processing
 "Analog-friendly" modulation
 → Parallel Spread-Spectrum Seq. (PSSS)
 Efficient synchronisation
 → Coherent detection in analog/RF domain

PSSS Transceiver

- Parallel spread-spectrum sequencing (PSSS)
 - = summation of DSSS streams (similar to HSPA)

European Microwave Week 2017

Significant part of PSSS BB processing in analog/mixed-signal domain

Low-speed DACs and ADCs operate at symbol rate.

PSSS System Design and Transmission Experiments

- Demonstration of PSSS¹ achieving 4 Gbps over 3m with BER of 1e-5
- Comparable to OFDM performance demo with same 60 GHz radios

¹ A. Wolf, R. Kraemer, J. C. Scheytt, "Ultra high speed wireless communication with low complexity transceiver," 2012 International Symposium on Signals, Systems, and Electronics (ISSSE)

- N parallel symbols transmitted (TX)
- N parallel symbols recovered by means of cross correlation (RX)
- High speed data converters not required (TX, RX)
- Channel equalization by weighting the decoding sequence coefficients

General Considerations

- Important factors for type and length of coding sequences:
- Input & output dynamic range of integrator (correlator) circuit
- Linearity & PAPR of the TX power amplifier
- Maximum no. of parallel symbols to be transmitted

Mixed-Signal PSSS BB Design¹

PSSS Coding Sequences

- Mixed signal PSSS baseband realization
 → chose shorter coding sequences
- Coding sequences considered:
 - Maximum length sequences (MLS or m-sequences): length 7, 15, or 31
 - Barker codes: length 7, 11, 13

MLS-15 turned out to be best choice for mixed signal PSSS BB implementation

¹ A. R. Javed, C. Scheytt: "System Design Considerations for a PSSS Transceiver for 100Gbps Wireless Communication with Emphasis on Mixed Signal Implementation ". IEEE WAMICOLN 2015

European Microwave Week 2017

PSSS Coding Sequences

Unipolar {0,1} and bipolar {-1,1} variants of data vectors, coding sequences, and decoding sequences for MLS with code length N

	Data encoding						
	Unipolar			Bipolar			
	Coding sequences			Coding sequences			
	Unipolar Bipolar			Unipolar		Bipolar	
No. of PSSS levels (TX)	$\frac{N+3}{2}$	N + 1		$\frac{N+3}{2}$		N + 1	
	Decoding sequences			Decodir	g sequences		
	Bipolar	Unipolar		Bipolar		Unipolar	
Dynamic range at integrator input ¹	$\frac{N+1}{2}$	$\frac{N+1}{2}$		$\frac{N+1}{4}$		Ν	
¹ (max. input amplitude) / (min. input amplitude)							

PSSS Coding Sequences

Comparison of MLS-15 with Barker-11 and Barker-13

	Data (<u>bipolar</u>)								
		Coding sequences (MLS-15)			Coding se (Barke	equences er-11)	Coding sequences (Barker-13)		
		Unipolar		Bipolar	Unipolar	Bipolar	Unipolar	Bipolar	
No. of PSSS levels		9		16	6	12	10	14	
		Decoding sequences		Decoding sequences		Decoding sequences			
		Bipolar		Unipolar	Bipolar+ 0.2*	Unipolar- 1.0*	Bipolar- 0.33*	Unipolar- 0.6*	
Dynamic range at integrator input		4		15	6	11	12	8	

* For barker codes a DC offset is required in the decoding sequence

Chip Rate

- Maximum realizable chip rate: 25–30 Gcps (0.13µm BiCMOS)
- Minimum bit loading required: 4 $\frac{bit}{symbol}$ since

Cyclic Extension

- Guard interval (cyclic extension) added to avoid ISI between PSSS blocks.
- Mixed signal implementation => fixed length of cyclic extension.
- Assuming a direct line of sight link with highly directive antennas, an estimated value of $3 T_{chip}$ is assumed.

Cyclic Extension

Cyclic extension reduces link utility

 $Link \ utility = \frac{Time \ for \ payload \ data}{Total \ time \ for \ data \ transaction} = \frac{15}{15+3} = 83.33\%$

• Chip rate can be increased to restore net data rate to 100 Gbps i.e.

$$25Gcps \times \frac{1}{0.8333} = 30Gcps$$

• Cyclic extension:
$$3 T_{chip} = 3 \times \frac{1}{30 \ Gcps} = 100 \ ps$$

PSSS Hardware-in-the-loop Experiment @ 240 GHz

Parameter	Value	Description
Ν	15	# of PSSS
		streams
Coding	MLS-15	15 bit MLS
sequence		cyclic-shifted
Modulation	PAM-2	1 bits/symbol
F _{chip}	30 Gchip/s	Chip rate
N _{guard}	3	Guard interval
		(# of chips)
f _{symbol}	1.67	Symbol rate
	GSym/s	

- PSSS baseband signals loaded to AWG
- 240 GHz GaAs RF transmitter and receiver
- Antennas replaced by attenuator
- DSO data processed with Matlab PSSS receiver model
- Only 2-level modulation limited RF frontend linearity

PSSS Hardware-in-the-loop Experiment @ 240 GHz

PSSS Mixed-Signal Receiver Block Diagram

PSSS Mixed-Signal Receiver Block Diagram

Integrate and Dump Correlator Circuit w. ADC

Slide 24

Integrate and Dump Correlator Circuit w. ADC

Analog 4-Quadrant Multiplier

Gilbert Cell operated as linear broadband analog multiplier

Integrate and Dump Correlator Circuit w. ADC

Broadband Resettable Integrator

- Q_5 , Q_6 and R_E operate as negative resistance generator w. $Z_1 = -2R_C$
- Hence R_C is cancelled and output currents of Q3 and Q4 is integrated by C_{integ}. -> extreme broadband integrator.

Broadband Resettable Integrator

- Q₃, R₃ Q₄, R₄ represent linear V-I converters
- Q₉, Q₁₀ control integrate and reset phase
 - $\mathsf{Q}_{13},\,\mathsf{Q}_{14}$, $\mathsf{I}_{\text{offset}}$ implement integrator offset control

Broadband Resettable Correlator Test Chip¹

- Realized in 130 nm SiGe BiCMOS technology (SG13S) from IHP
- Measurement results show integrator step response and reset.
- Correlator with highest input bandwidth (>25 GHz) and smallest reset time (<130 ps) reported so far.

¹ A. R. Javed, C. Scheytt, U. v.d. Ahe: "Linear Ultra-Broadband NPN-only Analog Correlator at 33 Gbps in 130 nm SiGe BiCMOS Technology", IEEE BCTM 2016

Integrate and Dump Correlator Circuit w. ADC

¹ similar to B. Sedighi, Y. Borokhovych, H. Gustat, C. Scheytt: "Low-power BiCMOS track-and-hold circuit with reduced signal feedthrough", IEEE IMS 2012

European Microwave Week 2017

1 Channel PSSS Receiver Test Chip

Power Dissipation

Circuit implemented in 130 nm SiGe BiCMOS. → high BW but not power efficient.
 Analog Current Switching MUX and Flash ADC most power hungry.

European Microwave Week 2017

Conclusions

- 100 Gb/s wireless communication with high RF bandwidth (e.g. 50 GHz) has extreme demand wrt. to baseband data converters and signal processing.
- PSSS is an analog-friendly modulation scheme. Mixed-signal PSSS allows for data converters to operate on a fraction of the signal bandwidth and low sampling rate.
- Mixed-signal PSSS system design and link experiments were shown.
- Circuit design of critical components. Correlator with world's highest input bandwidth (>25 GHz) and smallest reset time (<130 ps) was demonstrated.
- Implementation in 130nm SiGe BiCMOS shows that a 100 Gb/s mixed-signal PSSS baseband is technically feasible, however not power-efficient.
- Power efficient implementation would require a CMOS implementation (at least 45nm) either mixed-signal or digital.

