Development of Novel System and Component Architectures for Future Innovative 100 GBit/s Communication Systems

Christian Carlowitz

Friedrich-Alexander Universität Erlangen-Nürnberg

christian.carlowitz@fau.de

research supported by German Research Foundation (DFG), SPP 1655

Project Partners

- Prof. Dr.-Ing. Martin Vossiek
 Institute of Microwaves and Photonics (LHFT)
 Friedrich-Alexander Universität Erlangen-Nürnberg
- Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel Institute of Electronics Engineering (LTE) Friedrich-Alexander Universität Erlangen-Nürnberg
- Prof. Dr. sc. techn. habil. Frank Ellinger
 Chair of Circuit Design and Network Theory (CCN)
 Technische Universität Dresden
- Prof. Dr.-Ing. Manfred Berroth Institute of Electrical and Optical Communications Engineering (INT) Universität Stuttgart

Universität Stuttgart

Outline

- 1. Introduction
 - Motivation
 - SPARS Concept
 - Transceiver Architecture
- 2. Project Topics
 - LHFT: System Concept Investigation and Experimental Verification
 - CCN: 180 GHz SPARS Receiver Frontend Design
 - LTE: 180 GHz QAM Modulator and High Speed DAC Design
 - INT: High Speed Receiver Analog Baseband Architectures and Design
- 3. Conclusion

Motivation

- High speed communication systems:
 - Symbol rate up to 20% of carrier
 - − e.g. 2x18 GBaud at 180 GHz \rightarrow > 100 GBit/s wireless
- Technological limitations:
 - Operation close to process transit frequency
 - \rightarrow Low single-stage amplifier gain
 - Scaling issues: Long amplifier chains, high area cost, high power dissipation
- Goal: Scalable, efficient and broadband *quadrature* transceivers beyond homodyne architectures

SPARS - "Simultaneous Phase and Amplitude Regenerative Sampling" - A disruptive technology

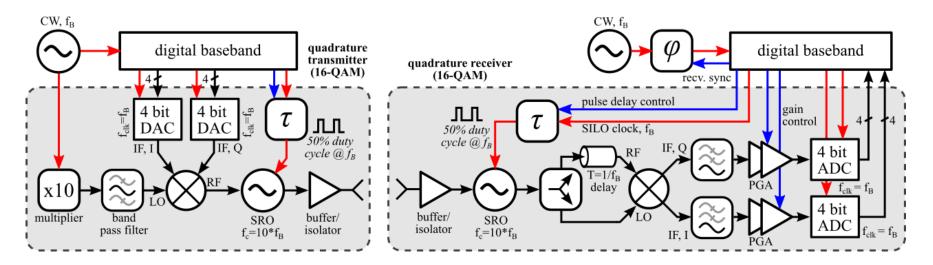
The ordinary approach

Gain: $g_t = g^N$

Example (with *N*=5; g = 2): $\Rightarrow g_t = 32$

Power dissipation:

$$P_{d_{total}} = 5 \cdot P_d$$


Power consumption and complexity dramatically reduced, especially useful when working close to transit frequency

SPARS / SRO approach sampling clk. (on/off switch) $g \rightarrow g_t \cdot \operatorname{III}_{T_{SW}}(t) \cdot s(t)$ Gain (pos. feedback): $g_t = \sum_{l=1}^{L} g^l$ Example: (with L=4; g = 2): $\Rightarrow g_t = 30$ $P_{d_{total}} = P_d$ Power dissipation: 5th boostamplifier 4th boost turned off 3rd boost 2nd boost 1st boost amplifier turned on short-time sensitivity to input

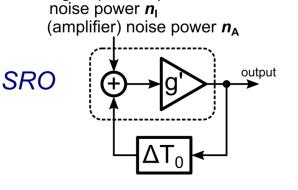
System Concept

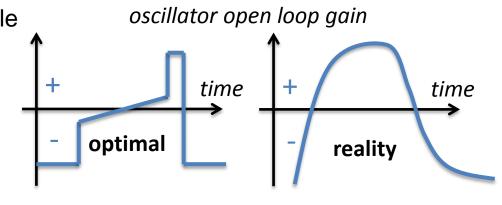
- Novel Transceiver Architecture: "SPARS", Simultaneous Phase and Amplitude Regenerative Sampling
- Major Benefits: Overcome scaling and power dissipation issues by:
 - High gain boost with single stage amplifier (6 dB \rightarrow 30 dB)
 - No PLL, no stabilized LO, no LNA or PA chains
 - Employing self-mixing receiver approach
 - Relaxing modulator power level requirements

WS-03 | Wireless 100Gb/s and Beyond: Progress in Ultra-fast Wireless Communications

System Concept Investigation and Experimental Verification

Noise Figure, SNR/Sensitivity

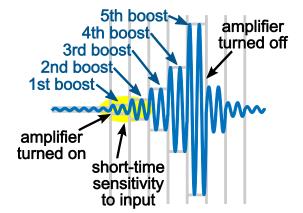

- Super-regenerative oscillator vs. amplifier chain
- Difference:
 - amplifier chain adds noise after each stage: $F_{ac} = F + \sum_{k=1}^{n-1} \frac{F-1}{G^k}$
 - SRO adds signal and noise at each oscillation cycle:
- Noise bandwidth?
 - homodyne receiver: symbol rate is lower bound (with sinc-shaped pulses, rect. filter)
 - super-regenerative theory:
 → similar performance achievable
 - at technological boundaries:
 2-4 dB excess
- overall: SRO and amplifier chain comparable / slight SRO advantage

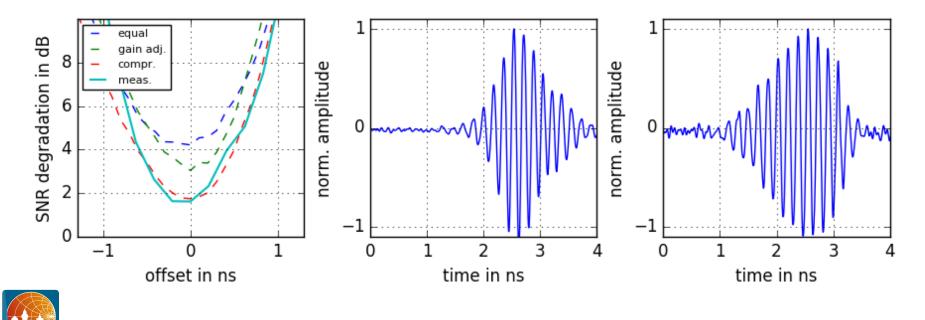

$\begin{array}{c} amplifier chain \\ (amplifier) & (amplifier) \\ noise power <math>n_A$ noise power n_A signal \square

signal power s_I

noise

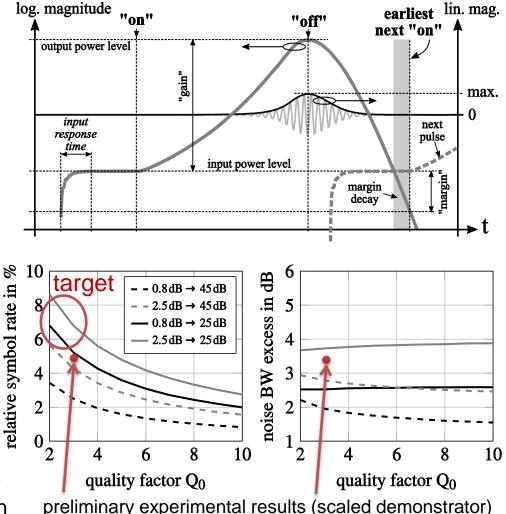
power *n*



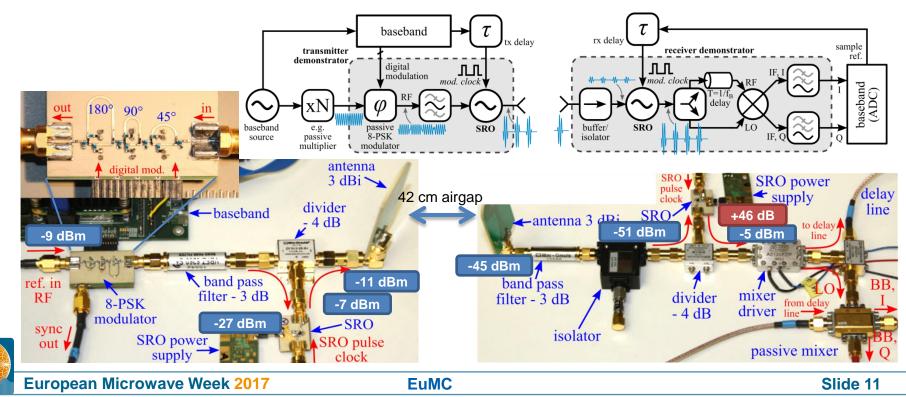

EuMC

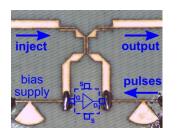
 $F_{sro} = F$

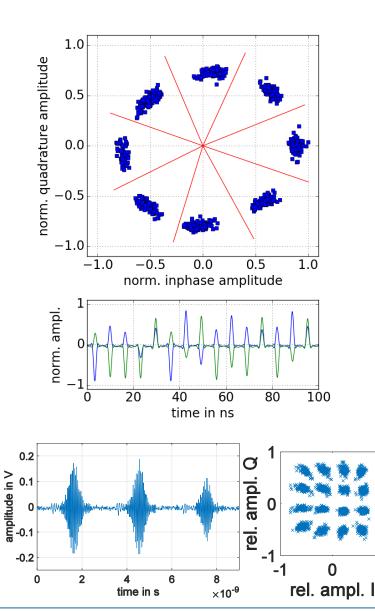
Pulse Recovery


- SRO samples *average* input power during sensitivity phase
- countermeasures (if peak power limited):
 - gain tuning \rightarrow faster rise, shorter sampling period
 - slight compression \rightarrow widens peak maximum
 - quench signal shaping \rightarrow hold unity gain on decay

Achievable Data Rate

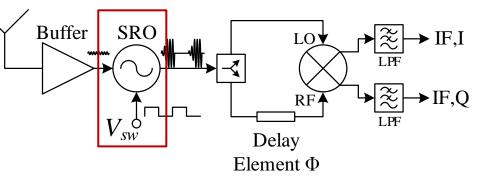

- Minimum period: Oscillation rise and decay + SNR margin
- Dependencies:
 - oscillator tank quality factor Q₀
 - active element gain M
- Typically low open loop gain (e.g. < 3 dB)
- Rise time limitation (T=2/f₀ ... 4/f₀) included in simulation
- Results:
 - 10x gain with 8-10% relative symbol rate could be achieved
 - Preliminary experimental result with scaled demonstrator
 - 270 MBaud measured @ 5.8 GHz
 - 293 MBaud theoretical expectation


Demonstrator Implementation

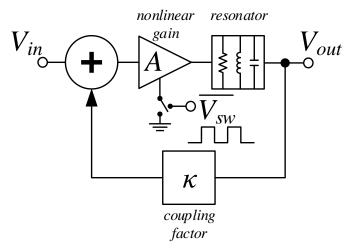

- Complete transmitter and receiver at 5.8 GHz, 150 MBaud (450 MBit/s)
 - passive 8-PSK modulator (diode switched transmission lines, 11 dB loss)
 - discrete SRO (electrically small, single port)
 - filter/antenna from COTS components (~10 dB loss)
 - Receiver: Isolator at input, self-mixing with cable delay line

Demonstrator Measurement Results

- Complete Transmitter & Receiver:
 - Modulation: 8-DPSK
 - EVM < -18 dB (BER < 10⁻³)
 - diff.: EVM < -21 dB
 - Measured Deviations:
 - TX EVM -30 dB (systematic)
 - RX EVM -24 dB (stochastic)
 - Sensitivity CW: -77 dBm, pulsed: -75 dBm
 → close to theoretical SNR=P_s/(k*T*B*F)
- 24 GHz 16-QAM Demonstrator (SRO only):
 - 343 MBaud (1.37 GBit/s)
 - 5 dB single stage gain
 → 25 dB
 - linear recovery of amplitude and phase

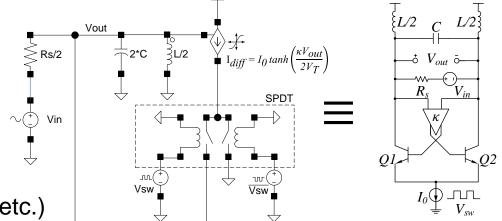

WS-03 | Wireless 100Gb/s and Beyond: Progress in Ultra-fast Wireless Communications

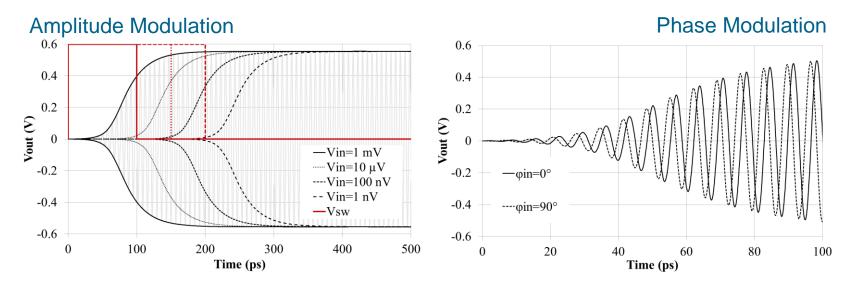
180 GHz SPARS Receiver Frontend Design



Integrated mm-Wave Super-Regenerative Oscillators (mmW SROs)

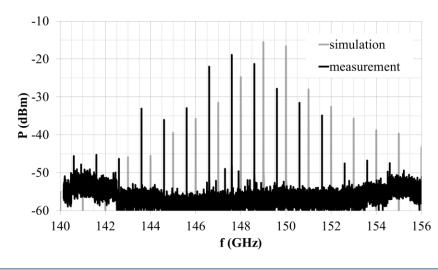
- Most amplification is done in SRO component
- Many design compromises possible e.g. gain, symbol rate, dynamic range, etc.
- Proper modelling of SRO circuit provides guidelines for performance optimization
- Large-signal behavior is of highest importance
- Study relation between V_{out} and V_{in} in phase and amplitude
- Model implemented electrically using CAD tools
- Cross-coupled topology chosen for monolithic integratibility

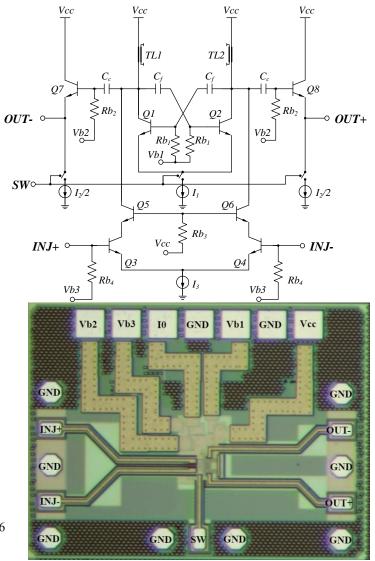

Proposed Regenerative Receiver



Modeling of integrated mmW SROs

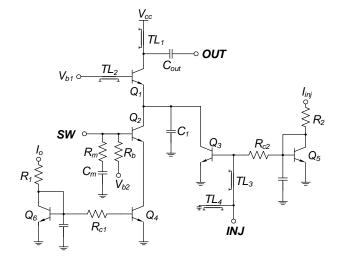
- Ideal nonlinear model; no base currents, numerical simulations
- Amplitude and phase sampling
- Influence of design variables on performance can be studied
 (e.g. loop gain, RC time constant, etc.)

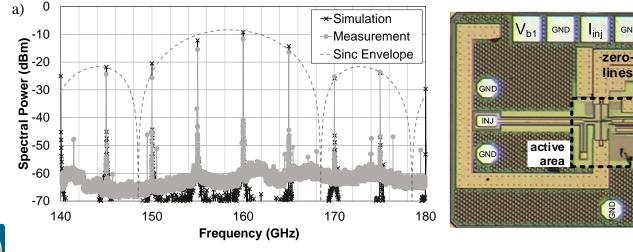


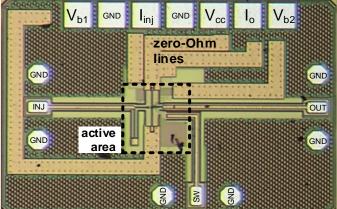


Cross-Coupled mmW SRO in IHP 0.13-µm SiGe BiCMOS

f _{osc} (GHz)	148
P _{DC} (mW)	48
f _{sw} (GHz)	1
P _{out} (dBm)	-6
Area (mm ²)	0.66
Gain (dB)	36

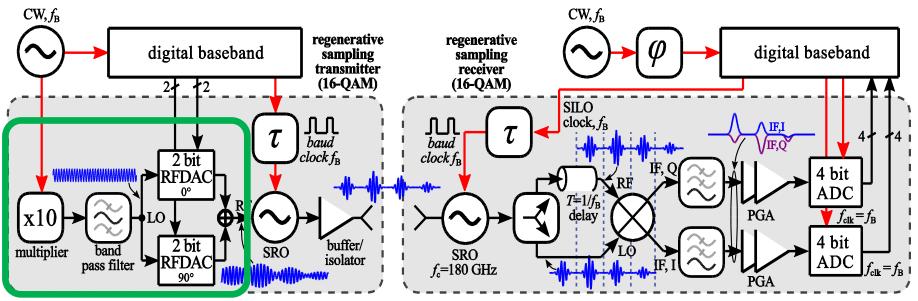





European Microwave Week 2017

Single-Ended Colpitts mmW SRO in IHP 0.13-µm SiGe BiCMOS

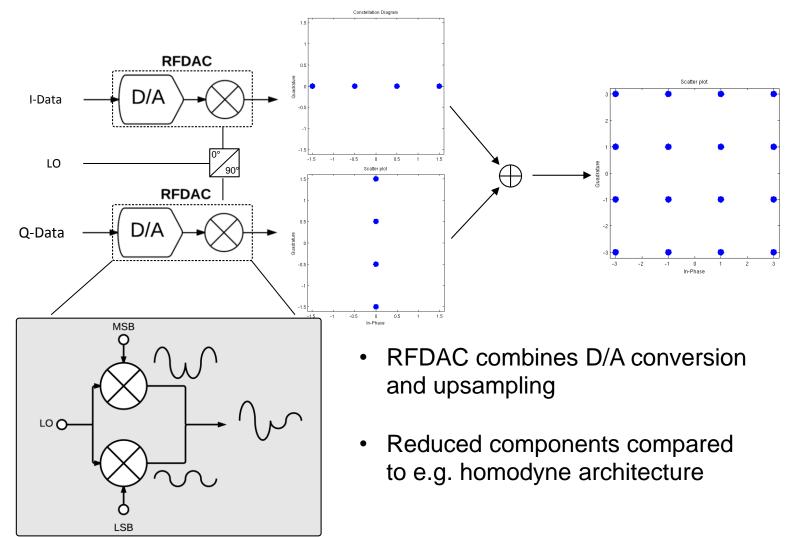
f _{osc} (GHz)	160
P _{DC} (mW)	6.6
f _{sw} (GHz)	5
P _{out} (dBm)	-8.4
Area (mm ²)	0.64
Gain (dB)	18.4



European Microwave Week 2017

WS-03 | Wireless 100Gb/s and Beyond: Progress in Ultra-fast Wireless Communications

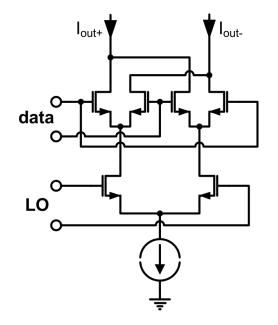
180 GHz QAM Modulator and High Speed DAC Design



SPARS based frontend

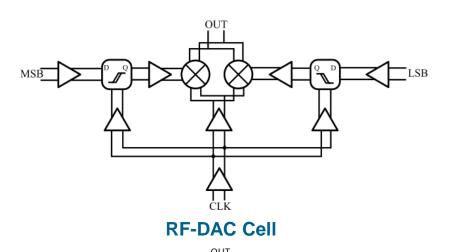
Functionality

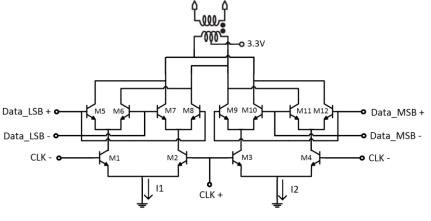
- Generates 180 GHz carrier frequency with a times ten frequency multiplier
- 16 QAM modulation achieved via two radio-frequency Digital-to-Analog Converters of 2 bit each with a modulation rate of up to 18 GS/s


Radio-Frequency Digital-to-Analog Converter

Radio-Frequency Digital-to-Analog Converter

- Current steering principle
 - Better spectral purity and wider bandwidth
- Upsides
 - Rejection of all outputs at DC and even harmonics of f_{LO}
 - All transistors act as switches, hence no linearity constraints
- Linearity of output signal defined by:
 - Resolution of converter
 - Output impedance modulation
 - Mismatch in timing

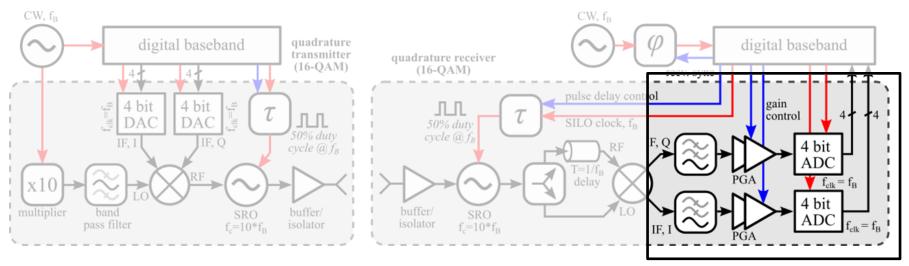



Example of RF-DAC output stage

Design of a 2 bit 180 GHz RF-DAC for SPARS

- Each RF-DAC consists of three identical RF-DAC cells
 - Current summation at the output via broadband transmission lines
 - Buffers for signal boosting and for blocking of clock feed through
 - Flip-Flops for retiming purposes
- Output stage of each RF-DAC cell features two parallel connected Gilbert cells working as BPSK modulators
 - Ratio between the transistors and currents of the two Gilbert cells to be 3:1
 - Transformer increases linearity and SNR

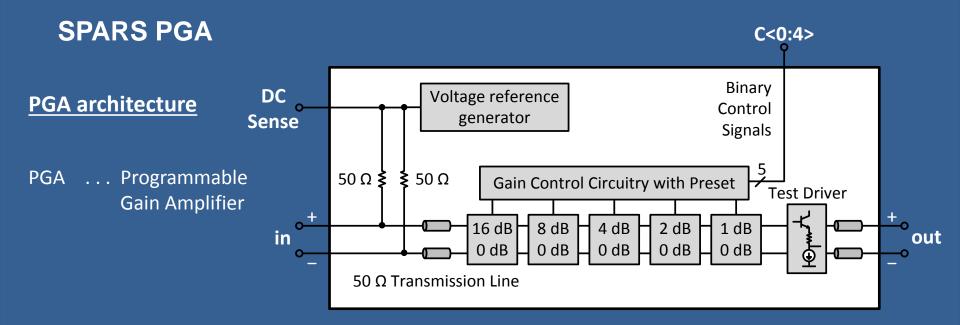
RF-DAC output stage



WS-03 | Wireless 100Gb/s and Beyond: Progress in Ultra-fast Wireless Communications

High Speed Receiver Analog Baseband Architectures and Design

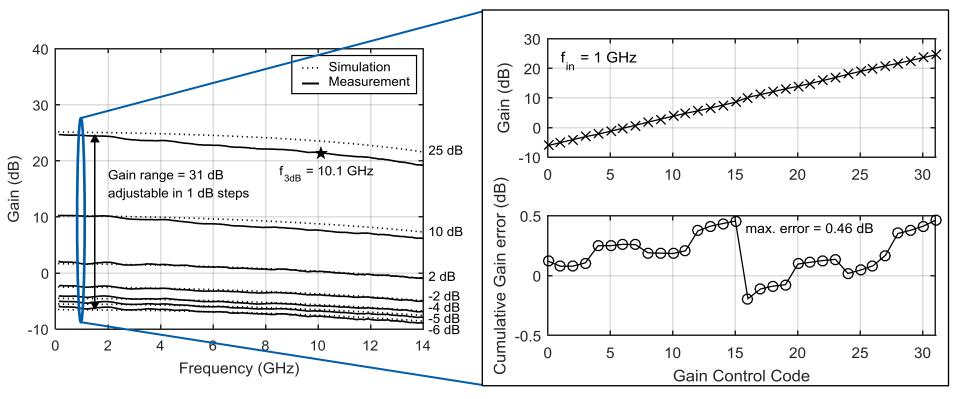
SPARS baseband receiver



Analog baseband receiver

Functionality

- Digitization of wideband inphase (I) and quadrature (Q) receive signals (> 9 GHz) by PGA+ADC solution
- External data storage on FPGA to ensure a sufficient number of receive samples for
 - system demonstration experiments and
 - evaluation of link synchronization parameters (e.g., I/Q gain and phase mismatches, etc.)

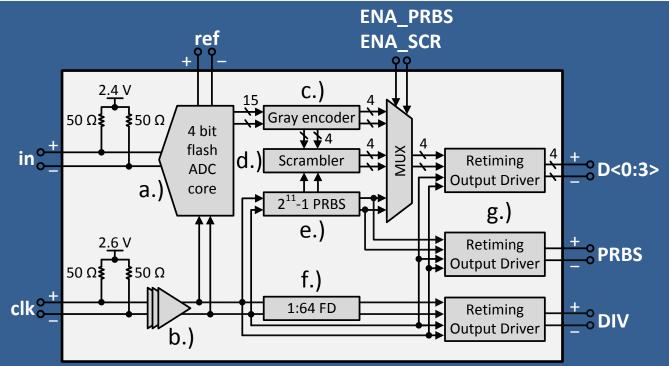


Die photograph **Specifications** G C_2 **C**0 C4 G implemented in Gain range: 31 dB in 0.13 μm SiGe BiCMOS 0.4 mm S S from IHP 1 dB steps S S -0.19/0.46 dB Gain accuracy: @ 1 GHz G DC C1 G >10.1 GH7 Bandwidth: 0.6 mm

European Microwave Week 2017

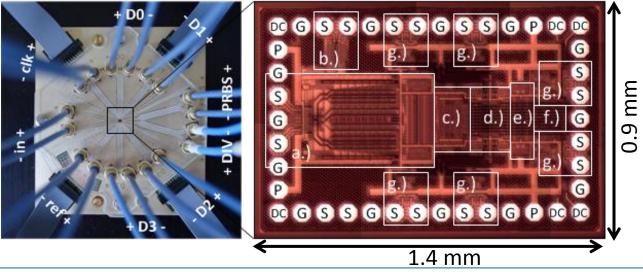
Achievements

- Low-complexity PGA architecture
- 31 dB gain range programmable in 1 dB steps
- Gain accuracy smaller than 0.46 dB
- >10.1 GHz 3-dB bandwidth

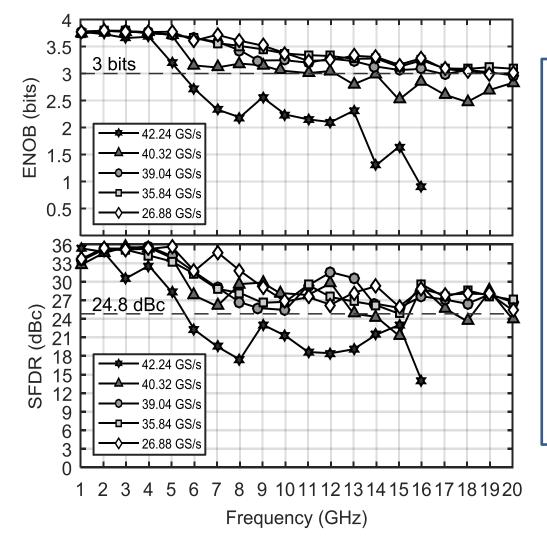


WS-03 | Wireless 100Gb/s and Beyond: Progress in Ultra-fast Wireless Communications

SPARS ADC


ADC architecture

- ADC ... Analog-to-Digital Converter
- PRBS ... Pseudo Random Bit Sequence
- FD ... Frequency Divider



<u>RF PCB (left)</u> and die photograph (right)

implemented in 0.13 μm SiGe BiCMOS from IHP

Measurement Results

Achievements

- Enables sampling rates from DC to 42 GS/s
 - => more than 60% speed
 improvement to current stateof-the-art single-core ADCs with
 digital encoder (25 GS/s)
- ENOB > 3 bits and SFDR >24.8 dBc within DC-20 GHz frequency band up to 39 GS/s
- FOM = 8.3 pJ/conv.
- FOM . . . Figure of Merit

Real-time measurement with 70 GHz sub-sampling scope

European Microwave Week 2017

Conclusion

- Novel transceiver architecture concept based on "Simultaneous Phase and Amplitude Regenerative Sampling"
 - significantly reduced system size and power consumption (single-stage instead of multi-stage amplifiers, no receiver synthesizer, ...)
 - verified to be competitive to homodyne system in terms of noise and data rate with scaled demonstrator
- mmW Super-Regenerative Oscillator for 180 GHz target frequency implemented and successfully verified
- Transmitter RFDAC concept investigated and implemented to exploit relaxed power level requirements from high SRO gain
- 4 bit ADC with up to 42 GS/s and outstanding performance as well as wideband baseband PGA demonstrated experimentally
- Next steps: Component integration to demonstrate mmW self-mixing receiver

References (I)

- C. Carlowitz and M. Vossiek, "Demonstration of an Efficient High Speed Communication Link Based on Regenerative Sampling," in Proceedings of the International Microwave Symposium (IMS2017), Honolulu, Hawaii, USA, June 2017.
- C. Carlowitz and M. Vossiek, "Concept for a Novel Low-Complexity QAM Transceiver Architecture Suitable for Close to Transition Frequency Operation," in Proceedings of the IEEE MTT-S International Microwave Symposium 2015 (IMS 2015), Phoenix, Arizona, USA, May 2015.
- C. Carlowitz and M. Vossiek, "PSK Modulator for Regenerative Sampling Gigabit UWB Communication," in Proceedings of the 8th German Microwave Conference (GeMiC2014), Aachen, Germany, Mar. 2014.
- C. Carlowitz, A. Esswein, R. Weigel and M. Vossiek, "Concepts for Generation of Angle Modulated mm-Wave UWB Signals for Communication and Ranging," presented at the IMS 2013 Workshop on RFICs/MMICs and Their Professional Wireless Sensing Applications, Seattle, USA, June 2013.
- C. Carlowitz, A. Esswein, R. Weigel and M. Vossiek, "Regenerative Sampling Self-Mixing Receiver: A Novel Concept for Low Complexity Phase Demodulation," in Proceedings of the IEEE International Microwave Symposium 2013, Seattle, USA, June 2013.
- H. Ghaleb, M. El-Shennawy, Udo Jörges, C. Carta, and F. Ellinger, "Nonlinear Modeling of Cross-Coupled Regenerative Sampling Oscillators," *IEEE PRIME*, 2017.
- H. Ghaleb, P. V. Testa, S. Schumann, C. Carta, and F. Ellinger, "A 160-GHz Switched Injection-Locked Oscillator for Phase and Amplitude Regenerative Sampling," accepted for publication in *IEEE MWCL*, 2017.
- H. Ghaleb, M. El-Shennawy, C. Carta, and F. Ellinger, "A 148-GHz Regenerative Sampling Oscillator," accepted for publication in *IEEE EuMIC*, 2017.

References (II)

- X.-Q. Du, A. Knobloch, M. Grözing, M. Buck and M. Berroth, "A DC to 10.1 GHz, 31 dB Gain Range Control, Digital Programmable Gain Amplifier," IEEE German Microwave Conference (GeMiC), Bochum, 2016, pp. 144-147.
- X.-Q. Du, A. Knobloch, M. Grözing, M. Buck and M. Berroth, "Analysis and Design of a Linear Digital Programmable Gain Amplifier," Frequenz, Degruyter, vol. 71, no. 3, pp. 143-150, Mar. 2017.
- M. Grözing, H. Huang, X.-Q. Du and M. Berroth, "Data converters for 100 Gbit/s communication links and beyond," IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Austin, TX, 2016, pp. 104-106.
- X.-Q. Du, M. Grözing, M. Buck and M. Berroth, "A 40 GS/s 4 bit SiGe BiCMOS Flash ADC," IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), to be published.
- T. Girg, D. Schrüfer, M. Dietz, A. Hagelauer, D. Kissinger, and R. Weigel, "Low Complexity 60-GHz Receiver Architecture for Simultaneous Phase and Amplitude Regenerative Sampling Systems" in International Symposium on Integrated Circuits, Singapur, 2016, pp. 1-4.
- T. Girg, C. Beck, M. Dietz, A. Hagelauer, D. Kissinger, and R. Weigel, "A 180 GHz Frequency Multiplier in a 130 nm SiGe BiCMOS Technology" in 2016 IEEE 14th International NEWCAS Conference, Vancouver, 2016, pp. 1-4.
- D. Kissinger, T. Girg, C. Beck, I. Nasr, H. Forstner, M. Wojnowski, K. Pressel, and R. Weigel, "Integrated millimeter-wave transceiver concepts and technologies for wireless multi-Gbps communication" in IEEE MTT-S International Microwave Symposium, Phoenix, AZ, 2015, pp. 1-3.
- A. Balteanu, P. Schvan and S. P. Voinigescu, "A 6-bit Segmented DAC Architecture With up to 56-GHz Sampling Clock and 6-Vpp Differential Swing," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 3, pp. 881-891, March 2016.

