

# Strategies for Energy-Efficient 100 Gb/s Baseband Processing Using Mixed Analog/Digital Signal Processing

J. Christoph Scheytt<sup>1</sup>, Rolf Kraemer<sup>2</sup>, Ingmar Kallfass<sup>3</sup>

<sup>1</sup> Heinz Nixdorf Institute, University of Paderborn, Germany
 <sup>2</sup> IHP GmbH, Frankfurt (Oder), Germany
 <sup>3</sup> University of Stuttgart, Germany



#### **Outline**

- Options for 100 Gb/s wireless
- Considerations wrt. a 100 Gb/s digital BB
- Research directions for a 100 Gb/s mixedmode BB processor
- Conclusions

7 October 2013 EuMiC & EuMC 2013 W19 2



#### **Options for 100 Gb/s Wireless?**

 Extreme Spectral Efficiency (SE) x "moderate" bandwidth (BW)

e.g. 10 b/sHz \* 10 GHz → RF bands at 60 GHz, E-band

Moderate SE x extreme BW
 e.g 4 b/sHz \* 25 GHz
 → RF bands > 200 GHz

Free-space optics
 e.g. 40 Gbaud with 8-PAM (3 b/sHz \* 30 GHz)



#### **Options for 100 Gb/s Wireless?**

 Extreme Spectral Efficiency (SE) x "moderate" bandwidth (BW)

e.g. 10 b/sHz \* 10 GHz

→ RF bands at 60 GHz, E-band

Moderate SE x extreme BW
e.g 4 b/sHz \* 25 GHz
→ RF bands > 200 GHz



Free-space optics
 e.g. 40 Gbaud with 8-PAM (3 b/sHz \* 30 GHz)



#### A Generic 100 Gb/s Receiver



- Receiver characteristics
  - $-f_c > 200 \text{ GHz}, RF BW \sim 50 \text{ GHz}$
  - *SE* 3b/sHz
  - *BB BW* ~ 25 GHz

7 October 2013 EuMiC & EuMC 2013 W19 5



#### A Generic 100 Gb/s Receiver



- Receiver characteristics
  - $-f_c > 200 \text{ GHz}, RF BW \sim 50 \text{ GHz}$
  - -SE 3b/sHz
  - BB BW ~ 25 GHz

Is the BB feasible from HW perspective?

How to implement it?



## 100 Gb/s Digital BB ...

#### ... is already there!

 100 GbE fiber-optic products out since 2013



- Use extensively wireless technology
  - Optical QPSK, 28 Gbaud, polarisation MUXed
  - Coherent detection, DACs, ADCs, fully digital baseband
  - Carrier recovery, synchronization, equalization, error correction



© Alcatel-Lucent



## 56 GS/s 8 Bit ADC<sup>1</sup>

- 320 time-interleaved SAR ADCs
- A Single SAR ADC with
  - 175 MS/s, 8 bit
- Analog BW 16 GHz, ENOB >5.7 bit
- Power dissipation <2W (!)</li>
- Design by Fujitsu Europe
- 65 nm CMOS
- → ADCs are feasible. Power will benefit from further CMOS scaling.

<sup>1</sup> Ian Dedic "56 GSps ADC Enabling 100GbE", OFC 2010 **FuMiC & FuMC 2013 W19** 



56 GS/s ADC Block Diagram



**Dual-56 GS/s ADC test chip** 



#### 100 Gb/s Digital BB ...

- In fiber-optic 100 GbE receiver DSP performs carrier recovery, synchronisation, channel equalization, error correction on 2\*28 Gbaud 6-8 bit data
- DSP needs ~30 TOPS¹
- Power target 4 ADCs + DSP ~50 W <sup>1</sup>
- →DSP dominates BB power dissipation in 100 GbE.
- → Could be true for wireless 100 Gb/s, too.

("Disclaimer": CMOS Scaling will help, equalization will be simpler for short range wireless links, only moderate spectral efficiency considered. → research topic)

<sup>&</sup>lt;sup>1</sup> Ian Dedic "56 GSps ADC Enabling 100GbE", OFC 2010



# Research Approach





#### Research Approach



Shift "analog boundary" → Mixed-mode BB w. dominant analog



#### Research Approach



**Analog processing** 

- → hardware-efficient, (potentially) power-efficient
- **Choose "Analog-friendly"** → Parallel Spread-Spectrum Sequencing (PSSS) modulation & coding
  - simplifies mixed-mode BB implementation
- Sync. Detection at RF
- → Comes at little extra hardware / power effort
- **Preprocessing in analog** domain
- → reduced dynamic range for ADCs, smaller DSP



# Parallel-Spread-Spectrum Sequencing (PSSS)



- Known coding technique from IEEE 802.15.4-2006
- <u>Transmitter:</u> k symbols  $(d_1 \text{ to } d_k)$  are spreaded by orthogonal codes  $B_1$  to  $B_k$  and summed before transmission.
- Receiver: The k symbols are retrieved by means of cyclic correlation.
- PSSS is "analog-friendly", simplifies mixed-signal coding and equalization.



#### **Synchronous Detection at RF**



- Digital carrier recovery and synchronisation at 100 Gb/s will be power-hungry.
- Synchronous detection in RF domain comes at little extra hardware effort and power.

7 October 2013 EuMiC & EuMC 2013 W19 14



#### **Conclusions**

- 100 Gb/s with moderate SE requires f<sub>c</sub> well beyond 100 or 200 GHz and extreme BB bandwidth.
- ADCs and digital BB are clearly feasible but DSP power likely to be excessive for mobile applications.
- Mixed-mode BB with dominant analog will reduce hardware effort (certainly) and power dissipation (potentially).
- PSSS as an "analog-friendly" coding / equalization scheme.
- Synchronous detection at RF as efficient alternative to digital carrier recovery / synchronisation.