

Optimization of 100 Gb/s Short Range Wireless Transceivers under Processing-Energy Constraints

Gerd Ascheid, Renato Negra, Norbert Wehn

Motivation

Power/energy consumption is critical

- Battery operation
- Issue of heat dissipation (consumer packaging)
- Increased temperature degrades performance (clock speed, variability)
- Smaller technology nodes are more susceptible to temperature induced degradations
- Assuming 1 W for processing in a 100 Gb/s transmission (excluding transmit power)
 - Available energy per bit: 10pJ/bit
 - Required energy per MAC-operation (ITRS prediction):
 - [□] 2.0 pJ @ 22 nm
 - ^o 0.7 pJ @ 8 nm

Motivation

- There are three important boundaries in the design of a wireless transmission system:
 - Power efficiency
 - Spectral efficiency
 - Implementation efficiency

⇒ These efficiencies are not independent!

Example: First two SISO MIMO Demapper ASICs in the world

- MMSE-PIC: ETHZ
- Cae²sar: RWTH

Research Goals

Basic spectral efficiency considerations:

- Assuming Nyquist rate transmission, 100 Gb/s requires
 - 50 GHz bandwidth for 2x1 bit/symbol (1 bit per I and Q)
 - 2x50 bit/symbol for 1 GHz bandwidth

3 Scenarios

- Carrier frequencies below 10 GHz
 ⇒ available bandwidth per transmission in the order of 1 GHz
- Towards sub-mm and optical frequencies above 120 GHz
 ⇒ very large bandwidths available
- 3. Intermediate frequency range, mainly around 60 GHz ⇒ several GHz of bandwidth available

Our research target:

- Phase 1: Scenario 3 (f_c around 60 GHz) How many bit/symbol within processing energy constraints?
- Phase 2: Continuation scenario 3 + scenario 2 (f_c above 120 GHz)

Research Approach

Design space exploration

- Algorithmic
 - modulation/coding
 - Beamforming/MIMO
- Architectural
 - partitioning analog vs. digital
 - relaxing A/D-interface requirements

Prototyping of critical building blocks

Hybrid implementation

Example for Approach

Equalization

Analog filter (compared to digital filter):

- + lower power consumption
- + high throughput
- + simpler A/D-interface
- requires adjustable components
- implementation tolerance and drifts
- ⇒digital compensation

⇒digital control

Example for Approach

- Fast Fourier Transform
 - Digital implementation
 - Analog implementation using active components*
 - Analog implementation using mainly passive components**

X[5]

- * Sadeghi, N.; Gaudet, V.; Schlegel, C.: "Analog DFT Processors for OFDM Receivers: Circuit Mismatch and System Performance Analysis", IEEE Trans. on Circuits and Systems-I, vol. 56, no. 9, Sept. 2009, pp. 2123-2131.
- ** Gupta, S.; Caloz, C.:" Analog Real-Time Fourier Transformer using a Group Delay Engineered C-Section All-Pass Network", IEEE Antennas and Propagation Society International Symposium 2010, pp. 1-4.

Dependencies between Work Packages

WP #	Title
1	RF-architectures
2	Channel modeling
3	Modulation and coding
4	Beamforming/MIMO
5	Joint analog/digital signal processing architectures
6	Power estimation
7	Energy budgeting

Thank you for your attention !

