

Front-Ends for High-Speed Mobile Data Communications at W-Band

C. Friesicke¹, A. Hamidian², M. Giese¹, G. Böck², and A. F. Jacob¹

¹Technische Universität Hamburg-Harburg, Institut für Hochfrequenztechnik ²Technische Universität Berlin, Fachgebiet Mikrowellentechnik

Outline

1. Introduction

- 2. Project Goals
- 3. State of the Art and Novel Concepts
- 4. System Budget
- 5. Conclusions

Why 100 GBit/s?

- ... one may ask.
- History has shown that users **will eventually use** the available bandwidth.
- Application scenarios:
 - Fast data transmission between devices (e.g., HDD to TV)
 - Seamless availability of cloud-stored data
 - Providing *many* users with a high data rate, i.e.
 >1 GBit/s (e.g., in departure lounges or shared offices)

26 July, 2013

Partners and Tasks

TU Berlin (BO 1520/7-1):

- CMOS power amplifier RFIC
- Efficiency, bandwidth

TU Hamburg-Harburg (JA 605/10-1):

- Integrated active antenna array
- Polarization multiplexing

Broadband front-end for W-band operation System-in-package with CMOS PA and antenna array

Possible application

Multi-user short range LOS communication

EuMW2013

1. Introduction

2. Project Goals

- 3. State of the Art and Novel Concepts
- 4. System Budget
- 5. Conclusions

26 July, 2013

EuMW2013

Frequency Band of Operation

W-Band (75 – 110 GHz)

- 35 GHz bandwidth
- Moderate complexity modulation schemes
- CMOS PA technology readily available
- Equipment available at TUB and TUHH
- System implementation feasible in near future

→ 100 Gbit/s +

Array-based Communiction

Systems

- Arrays for
 - Free space power combining
 - System scalability
 - Beam forming or beam steering
 - MIMO
- Circular polarization
 - Antenna alignment uncritical
- Dual polarization
 - Double data rate
 - Relaxed link budget requirements

26 July, 2013

EuMW2013

Low-cost Technologies

- CMOS technology
 - Highest integration density
 - Mixed signal SoC
 - High reliability
 - Cheap mass production
- Polymer process:
 - Vertical growth by polymer deposition and UV-curing
 - Inclined metalized walls
 - Fine resolution (µm scale)
 - Reliable interconnects

60 GHz CMOS PA with 0.27 mm² chip area

- 1. Introduction
- 2. Project Goals

3. State of the Art and Novel Concepts

- 4. System Budget
- 5. Conclusions

26 July, 2013

EuMW2013

CMOS Power Amplifier

1.4mm

2.5mr TX

[1] Z. Wang et al. – ISSCC 2013, pp. 136 -137.

State of the Art

- Systems demonstrated up to W-band
- Circuits and components up to 300 GHz
- Low PAE with increasing BW
- → No high PAE broadband PA available

Concepts

- Large signal cascode
- Differential design
 - Small source inductance
 - High gain
 - High output impedance
 - Low output loss/ high PAE
 - High bandwidth

9

1.4mm

RX

Integrated Antenna Array

Concepts

• 3D integrated horn antenna

• Dual circular polarization

Polymer process

State of the art

- Antenna-on-chip
 - Poor performance
 - Limited functionality
 - Large area even above 100 GHz
 - Arrays costly to realize
- Antenna-in-package
 - Wideband system-in-package [2]
 - Up to W-band

→No broadband circular polarized arrays

 [2] L. Tripodi et. al – Trans. MTT, 60, No. 12.

26 July, 2013

System Integration Concepts

EuMW2013

- Brick architecture
- PA-antenna interface
 - Geometry (e.g. pad layout)
 - Balanced feed
 - Matched to PA impedance
- Basic demonstrators

- 1. Introduction
- 2. Project Goals
- 3. State of the Art and Novel Concepts

4. System Budget

5. Conclusions

26 July, 2013

EuMW2013

13

Modulation Schemes: SNR

- Assume: Forward Error Correction (FEC)
 Dro EEC Bit Error Bate (BEB) < 10
 - Pre-FEC Bit Error Rate (BER) $\leq 10^{-3}$
 - AWGN channel
- SNR limit from BER plots:

• Example: SNR of 9.8 dB (QPSK) or 14.8 dB (8PSK) required.

- 50 Gbit/s per polarization (dashed line)
- Raised-cosine filter for pulse-shaping
 B' = B/(1 + r), with r = 0.3.
 → Data Rate = 27 Gbit/s · log₂m.
- FEC further reduces net data rate.
- QPSK: (54 GBit/s, SNR=9.8 dB)
 8PSK: (81 GBit/s, SNR=14.8 dB).
- Single polarization needs $m \ge 16$.

EuMW 2013

Scenarios: Free-Space Loss

EuMW2013

- 1 m 🔶 73 dB
- 10 m 🗦 93 dB
- 20 m 🔶 99 dB
- Loss varies across band
- Additional losses for PA and LNA packaging (about 1.5 dB each).

Tx: Power-combining and Array Gain

- CMOS PA at 5 dB backoff [3]
 P_{Tx} = 10 dBm
- Antenna gain of rect. waveguide: $G = 4\pi \cdot \eta_{rad} \cdot (A_{rect} / \lambda^2)$
- For +/- 45° max. scan angle element spacing d \leq 0.56 λ

→ d_{max} = 1.5 mm @ 110 GHz

- *N* **elements** for Tx.
- One element for Rx (for now).

26 July, 2013

17

Number of Array Elements

- Friis transmission equation:
 - $P_{Rx} = N \cdot P_{Tx} \cdot N_{eff} \cdot G_{Tx} \cdot G_{Rx} / L$
- CMOS LNA: *F* = 8 dB, *G*=20 dB [4].
- $SNR = P_{Rx} / k_B T_0 BF$ after CMOS LNA
- Goal: Solve for number of elements N

Mod.	Required # of Tx-Array Elements			Data Rate,
	1m	10 m	20m	dual pol.
BPSK	2	19	37	54 GBit/s
QPSK	3	26	52	108 GBit/s
8PSK	5	46	92	162 GBit/s

- 1. Introduction
- 2. Project Goals
- 3. State of the Art and Novel Concepts
- 4. System Budget

5. Conclusions

26 July, 2013

EuMW2013

EuMW 2013

Conclusions

Conclusions

- System development for
 - Operation at W-band
 - Dual circular polarization
 - Antenna array
 - Low-cost technologies (CMOS, 3D polymer process)
 - Scalable approach
- Integration concept for PA + antenna
 - Interfaces between PA/Ant (geometry, impedance)
- System budget analysis shows:
 - Short range (1m) with 2x2 Tx-array
 - Medium range (10m, 20m) with 5x6 or 7x8 Tx-array

Thank you for your attention

26 July, 2013

EuMW2013

References

- [1] Z. Wang et al.: "A 210GHz fully integrated differential transceiver with fundamentalfrequency VCO in 32nm SOI CMOS," ISSCC 2013, pp. 136 -137, San Francisco, Feb. 2013.
- [2] L. Tripodi et. al.: *"Broadband CMOS Millimeter-Wave Frequency Multiplier With Vivaldi Antenna in 3-D Chip-Scale Packaging,"* IEEE Trans. MTT, Vol. 60, No. 12, pp. 3761–3768.
- [3] K.-J. Tsai et. al.: "A W-band Power Amplifier in 65-nm CMOS with 27GHz Bandwidth and 14.8dBm Saturated Output Power," RFIC 2012, pp. 69 72, Montreal, June 2012.
- [4] D.-R. Lu et. al.: "A 75.5-to-120.5-GHz, high-gain CMOS low-noise amplifier" IMS 2012, Montreal, June 2012.