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What’s going on? - Challenges of the future
Moore‘s law
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Quelle: H. Bähring, Mikrorechnertechnik, Band , Springer, 2002.

Gordan Moore, TI 

1965:

“Complexity of an IC 

is doubling every 2 

years”

���� Integration density of Electronics is doubling every two years
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What’s going on? - Challenges of the future
ITRS Roadmap
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Source: INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS (ITRS) 2009 EDITION 
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What’s going on? - Challenges of the future
Edholm’s law of bandwidth
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Wireless data rates 

are growing even 

faster than wireline!

We will run into a 

serious problem!

LTE 50 Mbit/s

1 Gbit/s

Source: Steven Cherry, Edholm’s Law of Bandwidth,
Telecommunications data rates are as predictable as Moore’s Law, IEEE Spectrum, July 2004
Phil Edholm, Nortel’s chief technology officer and vice president of network architecture

Extrapolation

EASY-A/C,
LTE Advanced
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What’s going on? - Challenges of the future
Analysis by APWPT
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Source: M. Fehr, APWPT

���� Data Rate is doubling every two years
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What’s going on? - Challenges of the future
CISCO study
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�Mobile Communication Data amount is Doubling each year!
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What’s going on? - Challenges of the future
CISCO study
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Laptops and 
Smartphones with 
QuadCore and HD 
Display…
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What’s going on? - Challenges of the future
CISCO study
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Where does the 
audiovisual content 
come from?

Wireless cameras, 
wireless microphones, 
so PMSE…
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What’s going on? - Challenges of the future
Immersive perception
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Holodeck, 
telepresence

Source: Star Trek

Can we fully 
capture an event,  
performance?

Produce it ?

Reproduce it in 
an immersive 
way?

We are on the 
way by audio & 
video in HD, 3D, 
multichannel,… 
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What’s going on? - Challenges of the future
New Mobile MMIs
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Google Glasses

Source EDN

Source: Microvision

Source: Celluon

Source: Microvision Quadcore Smartphone LG
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Evolution of Converter Technology
Walden paper (Analog Devices) – ADC Snapshot 1999
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Source: Walden R.H., Analog-to-Digital Converter Survey and Analysis, IEEE JOURNAL ON SELECTED 

AREAS IN COMMUNICATIONS, VOL. 17, NO. 4, APRIL 1999, p539

SNR improvement 
1.5 bit in 8 years

Knee@600 kSa/s
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Evolution of Converter Technology
ADC Snapshot 2009
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Findings

• The rule “1 bit is lost for doubling frequency” still holds, 

6 dB SNR is lost, but only 3 dB process gain is gained – so it doesn’t pay off

• The knee shifts with technology evolution

• 200 MSa/s the only reasonable sampling rate for SDR - today

• Limits us to roughly 50 MHz air interface for highest dynamic range!

Knee@200 Msa/s
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Evolution of Converter Technology
ADC Snapshot 2010
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Findings

• High Momentum in shifting the knee

• Moore’s law is working for the knee shift

Most Recent figures

• ADC: 3.6 GSa/s @12 bit    and    DAC: 2.4 GSa/s @16bit

Knee@600 MSa/s
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Evolution of Converter Technology
DAC Snapshot 2010
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Findings

• DAC far ahead of ADC

• 2 bit/octave limit

• Moore’s law is also working for the knee shift
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Evolution of Converter Technology
Walden Knee
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Systematic partioning into A/D
Basestation cabinet

EUMW2013 W19

50% form factor

PA and cooling

(12 PAs für 3 sector

4 branch MIMO)

Analogue

� 75% form factor

� Doesn’t follow Moore’s 

law

� Innovation at 

architectural level 

necessary

Digital

� 25% form factor

� Follows Moore’s law

� 20 nm CMOS helps...

25% form factor

Coaxial resonators

(12 filter für 3 sector 

4 branch MIMO)

Source: Alcatel-Lucent OneBTS
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Systematic partioning into A/D
Basestation radio card
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Analogue functions
(RF Microwave)

Digital functions
(signal conditioning)

ADC

D
ig

it
a
l 

b
u
s

Source: Alcatel-Lucent OneBTS radio card

DAC



22

Systematic partioning into A/D
Pros and Cons
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Findings

� The arguments pro digital are very strong, but…

� Analogue is very beneficial in terms of capacity

− Digital: 200 MSa/s@16bit=3.2Gbit/s

− Analogue: 500 MHz@100 dB SNR=16.6 Gbit/s

Analogue Digital

Aging strong no

Temperarture Drift strong no

Predictable performance partly yes

Scales with Moore's law (price erosion) partly yes

reconfiguration possible easy

Filters (Performance in light of realization effort) moderate Very High

Immunity to EMC moderate high

Capacity bit/s (Shannon equivalent) high moderate









+⋅=

N

S
ldBWC 1
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Systematic partioning into A/D
4 Quadrants
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Analogue signal

Continuous time

Arbitrary amplitudes

Continuous time

Discrete amplitudes

Discrete time

Arbitrary amplitudes

Digital Signal

Discrete time

Discrete amplitudes

Domain of classical digital signal processing

� FPGA / ASIC / DSP

� Follows Moore’s law

� Class-S with DSM

Quantization

Sampling

Domain of classical RF/Microwave

� e.g. Class-AB power amplifier

� Moore’s law mostly not applicable

Digital Radio Processing

� Switch mode PA Class-D/E/F

� Class-S high speed digital 
amplifier (PWM)

Digital radio processing

� Switched cap filter

� Digital PLL

� DCO Digital controlled Oscillator

� DCF Digital controlled filter

Profit from Moore’s 

law by architecture 

innovation

Quantization noise 

only with digital, 

therefore focus 

here
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Systematic partioning into A/D
4 Quadrants

EUMW2013 W19

Analogue signal

Continuous time

Arbitrary amplitudes

Continuous time

Discrete amplitudes

Discrete time

Arbitrary amplitudes

Digital Signal

Discrete time

Discrete amplitudes

Analogue
+ Capacity

- Aging/Drift

- Doesn’t scale well

- Phase noise critical

Switched Cap
+ Capacity

+ scales well

- Jitter critical

PLM
+ Capacity

+ Scales well

+ Switch mode, high efficiency

- Short pulses, large fT needed

Digital
+ Scales well

- Quantization noise

- Low capacity

Matches
CMOS, GaN, InGaP
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Systematic partioning into A/D
How to move between Quadrants
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Problem

• How to move from Digital Time discrete to time continuous?

• Massive Oversampling?

• 2 GSa/s to 200 GSa/s 

• Only provides factor 100, so 20 dB process gain, equal to 3 bit

Solution

• Use a phase modulated clock

• Transition from time discrete -> time continuous

Issue

• Phase modulation of clock equal to PM

• We need conversion from IQ to polar

• Bandwidth enlargement by factor 5…7
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Systematic partioning into A/D
Complexity assessment
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Goal: One universal metric for analogue and digital

� Def.: Overhead factor

− Amount of data relative to net data stream

− Defined for each signal processing stage

� Net Data stream: Typical 12.2 kbit/s for voice

� Calculations:

− Analog domain: Use Shannon

B=bandwidth, SNR=Signal-to-Noise-ratio

− Digital domain:

N=resolution, r=clock frequency 

� Overhead factor: 

− By definition

− Decoders output / Coders input:

− air interface: 

� Method applicable for TX and RX

( )10/

log 1011 dBSNR

Ana ldB
N

S
ldBC +⋅=








+⋅=

rNCDigital ⋅=

skbit

C
O i

i
/2.12

=

1=iO

∞=iO

Patent: EP 1 521 738 B1, Method of analysing a receiver and/or  transmitter chain, 
Filing date 4th October 2003, Proprietor: Lucent, Inventor: G. Fischer
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Systematic partioning into A/D
Receiver Analysis for GSM
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Systematic partioning into A/D
Transmitter analysis for LTE
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Conversion from cartesian to polar
Bandwidth Enlargement
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���� Cartesian to polar conversion increases 
bandwidth by factor 5...7 !

Source:  G. Strasser B. Lindner, L. Maurer, G. Hueber, A. Springer, On the Spectral regrowth in polar Tramsmitters, IEEE 

IMS 2006
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Conversion from cartesian to polar
Evolution of wideband air interfaces
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�Zero crossing widens spectrum of phase even more
Minimize PAR (Peak to average ratio) and PMR (Peal to minimum ratio) by Clipping algorithms

Source: D. Rudolph, Out-of-Band Emissions of Digital Transmissions Using Kahn EER Technique, IEEE TRANS MTT, 

VOL. 50, NO. 8, AUGUST 2002
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Conversion from cartesian to polar
Modulation adapted to polar transmitters
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64 DAPSK Characteristics

• 4 amplitude rings, log steps

• 16 phase states per ring

• Differential coding of amplitude and phase

Vision

• Separate processing of AM and PM information

• Delay in AM and PM hasn’t to be matched

• EVM makes no sense any longer

• Pulse shaping not in linear domain IQ, but polar domain 

Source: H. Rohling, V. Engels, DIFFERENTIAL AMPLITUDE PHASE SHIFT KEYING (DAPSK) - A 
NEW MODULATION METHOD FOR DTVB -, International Broadcasting Convention, 14-18 
September 1995, Conference Publication No. 413,O IEE 1995.

See also:  Cahn C., Combined digital phase and amplitude modulation communication systems, IRE 
Transactions, communication systems , vol 8, pp. 150-155, Sept 1960
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Examples
Digital reconfiguration of analogue functions

EUMW2013 W19

A Renaissance 

of analogue!

Analogue/RF

in

Analogue/RF

outRadio Function Block

Signal processing stage

Digital control interface

(Digital setting of analogue parameters)

Analogue/RF Path

Digital path

This is a revolution!

Software Radio in 

analogue domain...

This slide is from Oct 2004, my time in Bell Labs
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Examples
Digital reconfiguration of analogue functions
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It got reality in 2010

Commercial grade!

MEMS – Tunable Digital Capacitor 
array (TDCA)
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Examples future
Phase modulated clock
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Source: Shinichi Hori, Kazuaki Kunihiro, Kiyohiko Takahashi, and Muneo Fukaishi, A 0.7-3GHz Envelope ∆Σ Modulator 

Using Phase Modulated Carrier Clock for Multi-mode/band Switching Amplifiers, IEEE RFIC 2011
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Examples future
Phase modulated clock
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Source: Shinichi Hori, Kazuaki Kunihiro, Kiyohiko Takahashi, and Muneo Fukaishi, A 0.7-3GHz Envelope ∆Σ Modulator 

Using Phase Modulated Carrier Clock for Multi-mode/band Switching Amplifiers, IEEE RFIC 2011

Time continuous
systems perform 
much better than 
time discrete 
ones!
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Examples future
Isolation of clock domains, assynchronous operation
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Source: TI DAC34SH84FIFO for separating
clock domains
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Examples future
Recursive filter
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DAC

ADC

Approach

• Hybrid of  analogue and digital processing

• Not a strict analogue recursive filter, nor a digital IIR

• Combine best of both worlds A/D

• Latency of converters critical

+
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Examples future
Discretized passive load modulation
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Cartesian 
to polar

AM

PM

Out

Supply

L

Variable

Load

Impedance

transformer

Switch mode

saturated

FM
DLL

Switch Mode

Class-D,E,F

X’

FM

I

Q

n

…
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Examples future
Discretized passive load modulation
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Implementation constraints

• We cannot strongly attenuate Amplitude

• Can’t we define the modulation directly in polar manner?

Requirement

• We need to avoid low amplitudes

• We need a zero crossing free modulation

• We need a modulation with limited PMPR (Peak to minimum power ratio)

• Anyhow we want limited PAPR (Peak to average ratio)

New approach

• Not only focus on clipping = limiting PAPR

• Work on algorithms for PMPR limiting

• GSM EDGE naturally has limited PMPR of 17 dB

• Selected Mapping in OFDM can not only be used for limiting PAPR, but also for limiting 

PMPR!
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Conclusion
Findings
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Analogue-Digital Balance

• Analogue is very powerful

• Analogue selectivity always needed

• Knee in sampling rate with converters continuously shifting

• SDR: We cannot shift all to SDR, believing Moore’s law

Architecture Innovation is necessary

• 4 quadrants - Beyond Moore

• There is more than just analogue and digital – e.g. PWM, switched cap filter

• New Architectures needed

• E.g. new Filter

Vision

• Modulation format designed to match TRX architecture - Polar definition

• Evolution of PHY and HW realization has to go hand in hand!

• PAPR and PMPR limitation


