A New View on Analogue-Digital-Balance with System Design

Prof. Dr.-Ing. Georg Fischer Lehrstuhl für Technische Elektronik

TECHNISCHE FAKULTÄT

- 1. What's going on? Challenges of the future
- 2. Evolution of Converter Technology
- 3. Systematic partioning into A/D
- 4. Conversion from cartesian to polar
- 5. Examples
 - Reconfigurable analogue, MEMS
 - Phase modulated clock
 - Recursive Filter
 - Discretized load modulation
- 6. Conclusion

1. What's going on? - Challenges of the future

TECHNISCHE FAKULTÄT

What's going on? - Challenges of the future Moore's law

→ Integration density of Electronics is doubling every two years

EUMW2013 W19

What's going on? - Challenges of the future ITRS Roadmap

Source: INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS (ITRS) 2009 EDITION

EUMW2013 W19

What's going on? - Challenges of the future Edholm's law of bandwidth

Source: Steven Cherry, Edholm's Law of Bandwidth,

Telecommunications data rates are as predictable as Moore's Law, IEEE Spectrum, July 2004 Phil Edholm, Nortel's chief technology officer and vice president of network architecture

EUMW2013 W19

What's going on? - Challenges of the future Analysis by APWPT

Tendenz der Datenrate über die letzten Jahre																	
Bit/s	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
1T																	
100G																100G E	hernet
50G								10G Et	hernet								
10G														USB 3.0			
5G											PCIxpre	ess					
1G				1G Ethe	ernet										8	02.13.3	c
500M							USB2.0		~10				UWB		802.11r	1	
100M	100M E	thernet							2			r					LTE
50M									802.11g			~100				HSDPA	
10M -			802.11b										HSDPA				
5M		USB1.0						i.									1.1
1M	802.11																i_
500k										EDGE							
100k												~ 9 Ja	hre				
50k				GPRS													
10k	GSM																
	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011

Legende:

Source: M. Fehr, APWPT

Kabelverbindung WLAN

Mobilfunk

→ Data Rate is doubling every two years

What's going on? - Challenges of the future CISCO study

Figure 1. Cisco Forecasts 6.3 Exabytes per Month of Mobile Data Traffic by 2015

Source: Cisco VNI Mobile, 2011

→ Mobile Communication Data amount is Doubling each year!

What's going on? - Challenges of the future CISCO study

Figure 3. Laptops and Smartphones Lead Traffic Growth

Source: Cisco VNI Mobile, 2011

QuadCore and HD Display...

EUMW2013 W19

What's going on? - Challenges of the future CISCO study

VoIP traffic forecasted to be 0.4% of all mobile data traffic in 2015. Source: Cisco VNI Mobile, 2011 Wireless cameras, wireless microphones, so PMSE...

What's going on? - Challenges of the future

Immersive perception

Can we fully capture an event, performance?

Produce it ?

Reproduce it in an immersive way?

We are on the way by audio & video in HD, 3D, multichannel,...

Holodeck, telepresence

Source: Star Trek

What's going on? - Challenges of the future New Mobile MMIs

Source: Microvision

Source: Celluon

Source: Microvision

2. Evolution of Converter Technology

TECHNISCHE FAKULTÄT

Evolution of Converter Technology

Walden paper (Analog Devices) – ADC Snapshot 1999

Source: Walden R.H., Analog-to-Digital Converter Survey and Analysis, IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 4, APRIL 1999, p539

EUMW2013 W19

Evolution of Converter Technology

ADC Snapshot 2009

Findings

- The rule "1 bit is lost for doubling frequency" still holds,
 6 dB SNR is lost, but only 3 dB process gain is gained so it doesn't pay off
- The knee shifts with technology evolution
- 200 MSa/s the only reasonable sampling rate for SDR today
- Limits us to roughly 50 MHz air interface for highest dynamic range!

Evolution of Converter Technology ADC Snapshot 2010

Findings

- High Momentum in shifting the knee
- Moore's law is working for the knee shift

Most Recent figures

• ADC: 3.6 GSa/s @12 bit and DAC: 2.4 GSa/s @16bit EUMW2013 W19

Evolution of Converter Technology DAC Snapshot 2010

Findings

conversion rate (MSa/s)

- DAC far ahead of ADC
- 2 bit/octave limit
- Moore's law is also working for the knee shift

Evolution of Converter Technology Walden Knee

EUMW2013 W19

3. Systematic partioning into A/D

TECHNISCHE FAKULTÄT

Systematic partioning into A/D Basestation cabinet

Analogue

- 75% form factor
- Doesn't follow Moore's law
- Innovation at architectural level necessary

Digital

- 25% form factor
- Follows Moore's law
- 20 nm CMOS helps...

Source: Alcatel-Lucent OneBTS

25% form factor Coaxial resonators (12 filter für 3 sector 4 branch MIMO)

50% form factor PA and cooling (12 PAs für 3 sector 4 branch MIMO)

Systematic partioning into A/D Basestation radio card

Source: Alcatel-Lucent OneBTS radio card

Systematic partioning into A/D Pros and Cons

	Analogue	Digital
Aging	strong	no
Temperarture Drift	strong	no
Predictable performance	partly	yes
Scales with Moore's law (price erosion)	partly	yes
reconfiguration	possible	easy
Filters (Performance in light of realization effort)	moderate	Very High
Immunity to EMC	moderate	high
Capacity bit/s (Shannon equivalent)	high	moderate

Findings

- The arguments pro digital are very strong, but...
- Analogue is very beneficial in terms of capacity
 - Digital: 200 MSa/s@16bit=3.2Gbit/s

- $C = BW \cdot ld\left(1 + \frac{S}{N}\right)$
- Analogue: 500 MHz@100 dB SNR=16.6 Gbit/s

Systematic partioning into A/D 4 Quadrants

EUMW2013 W19

Systematic partioning into A/D

4 Quadrants

Analogue

- + Capacity
- Aging/Drift
- Doesn't scale well
- Phase noise critical

Analogue signal Continuous time Arbitrary amplitudes	Continuous time Discrete amplitudes
Discrete time Arbitrary amplitudes	Digital Signal Discrete time Discrete amplitudes

PLM

- + Capacity
- + Scales well
- + Switch mode, high efficiency
- Short pulses, large f_T needed

Switched Cap

- + Capacity
- + scales well
- Jitter critical

Digital

- + Scales well
- Quantization noise
- Low capacity

Systematic partioning into A/D How to move between Quadrants

Problem

- How to move from Digital Time discrete to time continuous?
- Massive Oversampling?
- 2 GSa/s to 200 GSa/s
- Only provides factor 100, so 20 dB process gain, equal to 3 bit

Solution

- Use a phase modulated clock
- Transition from time discrete -> time continuous

Issue

- Phase modulation of clock equal to PM
- We need conversion from IQ to polar
- Bandwidth enlargement by factor 5...7

Systematic partioning into A/D

Complexity assessment

Goal: One universal metric for analogue and digital

- Def.: Overhead factor
 - Amount of data relative to net data stream
 - Defined for each signal processing stage
- Net Data stream: Typical 12.2 kbit/s for voice
- Calculations:
 - Analog domain: Use Shannon
 B=bandwidth, SNR=Signal-to-Noise-ratio
 - Digital domain: N=resolution, r=clock frequency
- Overhead factor:
 - By definition
 - Decoders output / Coders input:
 - air interface:
- Method applicable for TX and RX

Patent: EP 1 521 738 B1, Method of analysing a receiver and/or transmitter chain, Filing date 4th October 2003, Proprietor: Lucent, Inventor: G. Fischer

$$C_{Ana\log} = B \cdot ld \left(1 + \frac{S}{N}\right) = B \cdot ld \left(1 + 10^{SNR_{dB}/10}\right)$$

$$O_i = \frac{C_i}{12.2 \, kbit \, / \, s}$$
$$O_i = 1$$

 $O_i = \infty$

 $C_{Digital} = N \cdot r$

Systematic partioning into A/D Receiver Analysis for GSM

Signal processing stage number

Systematic partioning into A/D Transmitter analysis for LTE

EUMW2013 W19

4. Conversion from cartesian to polar

TECHNISCHE FAKULTÄT

Conversion from cartesian to polar

Bandwidth Enlargement

Source: G. Strasser B. Lindner, L. Maurer, G. Hueber, A. Springer, On the Spectral regrowth in polar Tramsmitters, IEEE IMS 2006

Cartesian to polar conversion increases bandwidth by factor 5...7 !

EUMW2013 W19

Conversion from cartesian to polar

Evolution of wideband air interfaces

Fig. 6. Example of vector diagram of complex noise with a "hole."

Source: D. Rudolph, Out-of-Band Emissions of Digital Transmissions Using Kahn EER Technique, IEEE TRANS MTT, VOL. 50, NO. 8, AUGUST 2002

→ Zero crossing widens spectrum of phase even more

Minimize PAR (Peak to average ratio) and PMR (Peal to minimum ratio) by Clipping algorithms

Conversion from cartesian to polar

Modulation adapted to polar transmitters

64 DAPSK Characteristics

- 4 amplitude rings, log steps
- 16 phase states per ring
- Differential coding of amplitude and phase

Vision

- Separate processing of AM and PM information
- Delay in AM and PM hasn't to be matched
- EVM makes no sense any longer
- Pulse shaping not in linear domain IQ, but polar domain

Source: H. Rohling, V. Engels, DIFFERENTIAL AMPLITUDE PHASE SHIFT KEYING (DAPSK) - A NEW MODULATION METHOD FOR DTVB -, International Broadcasting Convention, 14-18 September 1995, Conference Publication No. 413,O IEE 1995.

See also: Cahn C., Combined digital phase and amplitude modulation communication systems, IRE Transactions, communication systems, vol 8, pp. 150-155, **Sept 1960**

EUMW2013 W19

5. Examples

TECHNISCHE FAKULTÄT

Examples Digital reconfiguration of analogue functions

It got reality in 2010 Commercial grade!

MEMS – Tunable Digital Capacitor array (TDCA)

EUMW2013 W19

Examples future Phase modulated clock

Source: Shinichi Hori, Kazuaki Kunihiro, Kiyohiko Takahashi, and Muneo Fukaishi, A 0.7-3GHz Envelope ΔΣ Modulator Using Phase Modulated Carrier Clock for Multi-mode/band Switching Amplifiers, IEEE RFIC 2011

Examples future Phase modulated clock

Time continuous systems perform much better than time discrete ones!

Fig.3 CDPA performance comparison for averaging switching rate (a) and coding efficiency at maximum output power (b)

Source: Shinichi Hori, Kazuaki Kunihiro, Kiyohiko Takahashi, and Muneo Fukaishi, A 0.7-3GHz Envelope ΔΣ Modulator Using Phase Modulated Carrier Clock for Multi-mode/band Switching Amplifiers, IEEE RFIC 2011

EUMW2013 W19

Examples future

Isolation of clock domains, assynchronous operation

Examples future Recursive filter

Approach

- Hybrid of analogue and digital processing
- Not a strict analogue recursive filter, nor a digital IIR
- Combine best of both worlds A/D
- Latency of converters critical

EUMW2013 W19

Examples future Discretized passive load modulation

Examples future Discretized passive load modulation

Implementation constraints

- We cannot strongly attenuate Amplitude
- Can't we define the modulation directly in polar manner?

Requirement

- We need to avoid low amplitudes
- We need a zero crossing free modulation
- We need a modulation with limited PMPR (Peak to minimum power ratio)
- Anyhow we want limited PAPR (Peak to average ratio)

New approach

- Not only focus on clipping = limiting PAPR
- · Work on algorithms for PMPR limiting
- GSM EDGE naturally has limited PMPR of 17 dB
- Selected Mapping in OFDM can not only be used for limiting PAPR, but also for limiting PMPR!

6. Conclusion

TECHNISCHE FAKULTÄT

Conclusion Findings

Analogue-Digital Balance

- Analogue is very powerful
- Analogue selectivity always needed
- Knee in sampling rate with converters continuously shifting
- SDR: We cannot shift all to SDR, believing Moore's law

Architecture Innovation is necessary

- 4 quadrants Beyond Moore
- There is more than just analogue and digital e.g. PWM, switched cap filter
- New Architectures needed
- E.g. new Filter

Vision

- Modulation format designed to match TRX architecture Polar definition
- Evolution of PHY and HW realization has to go hand in hand!
- PAPR and PMPR limitation

