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1. Introduction 

– Motivation 

– SPARS Concept 

– Transceiver Architecture 

2. Project Topics 

– LHFT: System Concept Investigation and Experimental Verification 

– CCN: 180 GHz SPARS Receiver Frontend Design 

– LTE: 180 GHz QAM Modulator and High Speed DAC Design 

– INT: High Speed Receiver Analog Baseband Architectures and Design 

3. Conclusion 

 

Outline 
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 High speed communication systems: 

– Symbol rate up to 20% of carrier 

– e.g. 2x18 GBaud at 180 GHz  > 100 GBit/s wireless 

 Technological limitations: 

– Operation close to process transit frequency 

 Low single-stage amplifier gain 

– Scaling issues: Long amplifier chains, high area cost, high power 

dissipation 

 Goal: Scalable, efficient and broadband quadrature transceivers 

beyond homodyne architectures 

Motivation 
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SPARS - „Simultaneous Phase and Amplitude Regenerative 

Sampling“ -  A disruptive technology 

The ordinary approach   SPARS / SRO approach 

 

 

 

 

Gain:     Gain (pos. feedback):  

Example (with N=5; g = 2):   Example: (with L=4; g = 2): 

Power dissipation:    Power dissipation: 
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 Novel Transceiver Architecture: „SPARS“, Simultaneous Phase and 

Amplitude Regenerative Sampling 
  

 Major Benefits: Overcome scaling and power dissipation issues by: 

– High gain boost with single stage amplifier (6 dB  30 dB) 

– No PLL, no stabilized LO, no LNA or PA chains 

– Employing self-mixing receiver approach 

– Relaxing modulator power level requirements 

System Concept 
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System Concept Investigation and 

Experimental Verification 
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 Super-regenerative oscillator vs. amplifier chain 

 Difference: 

– amplifier chain adds noise 

after each stage: 

– SRO adds signal and noise 

at each oscillation cycle: 

 Noise bandwidth? 

– homodyne receiver: symbol rate is lower bound 

(with sinc-shaped pulses, rect. filter) 

– super-regenerative theory: 

 similar performance achievable 

– at technological boundaries: 

2-4 dB excess 

 overall: SRO and amplifier chain 

comparable / slight SRO 

advantage 

 

Noise Figure, SNR/Sensitivity 
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 SRO samples average input power during 

sensitivity phase 

 countermeasures (if peak power limited): 

– gain tuning  faster rise, shorter sampling period 

– slight compression  widens peak maximum 

– quench signal shaping  hold unity gain on decay 

Pulse Recovery 
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 Minimum period: Oscillation rise 

and decay + SNR margin 

 Dependencies: 

– oscillator tank quality factor Q0 

– active element gain M 

 Typically low open loop gain 

(e.g. < 3 dB) 

 Rise time limitation (τ=2/f0 … 4/f0) 

included in simulation 

 Results: 

– 10x gain with 8-10% relative 

symbol rate could be achieved 

– Preliminary experimental 

result with scaled demonstrator 

• 270 MBaud measured @ 5.8 GHz 

• 293 MBaud theoretical expectation 

Achievable Data Rate 

target 

preliminary experimental results (scaled demonstrator) 
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 Complete transmitter and receiver at 5.8 GHz, 150 MBaud (450 MBit/s) 

– passive 8-PSK modulator (diode switched transmission lines, 11 dB loss) 

– discrete SRO (electrically small, single port) 

– filter/antenna from COTS components (~10 dB loss) 

– Receiver: Isolator at input, self-mixing with cable delay line 

 

Demonstrator Implementation 
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 Complete Transmitter & Receiver: 

– Modulation: 8-DPSK 

• EVM < -18 dB (BER < 10-3) 

• diff.: EVM < -21 dB 

– Measured Deviations: 

• TX EVM -30 dB (systematic) 

• RX EVM -24 dB (stochastic) 

– Sensitivity CW: -77 dBm, pulsed: -75 dBm 

 close to theoretical SNR=Ps/(k*T*B*F) 

 

 24 GHz 16-QAM Demonstrator (SRO only): 

– 343 MBaud (1.37 GBit/s) 

– 5 dB single stage gain 

 25 dB 

– linear recovery of 

amplitude and phase 

Demonstrator Measurement Results 
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180 GHz SPARS Receiver Frontend Design 
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 Most amplification is done in SRO 

    component 

 Many design compromises possible 

    e.g. gain, symbol rate, dynamic 

    range, etc. 

 Proper modelling of SRO circuit provides 

    guidelines for performance optimization 

 Large-signal behavior is of highest importance 

 Study relation between Vout and Vin in phase 

    and amplitude 

 Model implemented electrically using CAD tools 

 Cross-coupled topology chosen for monolithic 

    integratibility 

Integrated mm-Wave Super-Regenerative Oscillators (mmW SROs) 

Proposed Regenerative Receiver 
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 Ideal nonlinear model; no base 

    currents, numerical simulations 

 Amplitude and phase sampling 

 Influence of design variables on 

    performance can be studied 

    (e.g. loop gain, RC time constant, etc.) 

Modeling of integrated mmW SROs 
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Cross-Coupled mmW SRO in IHP 0.13-µm SiGe BiCMOS 
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Single-Ended Colpitts mmW SRO in IHP 0.13-µm SiGe BiCMOS 
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180 GHz QAM Modulator and 

High Speed DAC Design 
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Functionality 

 Generates 180 GHz carrier frequency with a times ten frequency multiplier 

 16 QAM modulation achieved via two radio-frequency Digital-to-Analog 

Converters of 2 bit each with a modulation rate of up to 18 GS/s 

SPARS based frontend 
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Radio-Frequency Digital-to-Analog Converter 

0° 

90° 

• RFDAC combines D/A conversion 
and upsampling 

 
• Reduced components compared 

to e.g. homodyne architecture 
 

 

I-Data 

Q-Data 

LO 
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 Current steering principle 

– Better spectral purity and wider bandwidth 

 

 Upsides 

– Rejection of all outputs at DC and even 

harmonics of fLO 

– All transistors act as switches, hence no 

linearity constraints 

 

 Linearity of output signal defined by: 

– Resolution of converter 

– Output impedance modulation 

– Mismatch in timing 

 

 

Radio-Frequency Digital-to-Analog Converter 

Example of RF-DAC output 

stage 
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 Each RF-DAC consists of three identical 

RF-DAC cells 

– Current summation at the output via 

broadband transmission lines 

– Buffers for signal boosting and for 

blocking of clock feed through 

– Flip-Flops for retiming purposes 

 

 

 Output stage of each RF-DAC cell features 

two parallel connected Gilbert cells working 

as BPSK modulators 

– Ratio between the transistors and 

currents of the two Gilbert cells to be 3:1 

– Transformer increases linearity and SNR 

 

Design of a 2 bit 180 GHz RF-DAC for SPARS 

RF-DAC Cell 

RF-DAC output stage 
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High Speed Receiver Analog Baseband 

Architectures and Design 
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SPARS baseband receiver 

Functionality 
• Digitization of wideband inphase (I) and quadrature (Q) receive signals (> 9 GHz) by 

PGA+ADC solution 
• External data storage on FPGA to ensure a sufficient number of receive samples for 

• system demonstration experiments and 
• evaluation of link synchronization parameters (e.g.,  I/Q  gain and phase 

mismatches, etc.) 

Analog baseband receiver 
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SPARS PGA 

PGA architecture 

PGA 
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Measurement Results 

Achievements • Low-complexity PGA architecture  
• 31 dB gain range programmable in 1 dB steps 
• Gain accuracy smaller than 0.46 dB 
• >10.1 GHz 3-dB bandwidth 
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SPARS ADC 

RF PCB (left)  
and die photo- 
graph (right) 

ADC architecture 
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Measurement Results 

Real-time measurement with 70 GHz sub-sampling scope 

• Enables sampling rates from  
      DC to 42 GS/s 
    => more than 60% speed  
         improvement to current state- 
         of-the-art single-core ADCs with    
         digital encoder (25 GS/s) 
 
• ENOB > 3 bits and SFDR >24.8 dBc 
      within DC-20 GHz frequency band    
      up to 39 GS/s 
 
• FOM = 8.3 pJ/conv. 

FOM . . . Figure of Merit 

Achievements 
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 Novel transceiver architecture concept based on „Simultaneous Phase and 

Amplitude Regenerative Sampling“ 

– significantly reduced system size and power consumption 

(single-stage instead of multi-stage amplifiers, no receiver synthesizer, …) 

– verified to be competitive to homodyne system in terms of noise and data 

rate with scaled demonstrator 

 mmW Super-Regenerative Oscillator for 180 GHz target frequency 

implemented and successfully verified 

 Transmitter RFDAC concept investigated and implemented to exploit relaxed 

power level requirements from high SRO gain 

 4 bit ADC with up to 42 GS/s and outstanding performance as well as 

wideband baseband PGA demonstrated experimentally 

 Next steps: Component integration to demonstrate mmW self-mixing 

receiver 

 

Conclusion 
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